Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.4.283

A semi-analytical solution to spherical cavity expansion in unsaturated soils  

Tang, Jianhua (Department of Civil Engineering, Tongji University)
Wang, Hui (Department of Civil Engineering, Tongji University)
Li, Jingpei (Department of Civil Engineering, Tongji University)
Publication Information
Geomechanics and Engineering / v.25, no.4, 2021 , pp. 283-294 More about this Journal
Abstract
This paper presents a rigorous solution for spherical cavity expansion in unsaturated soils under constant suction condition. The hydraulic behavior that describes the saturation-suction relationship is modeled by a void ratio-dependent soil-water characteristic curve, which allows the hydraulic behavior to fully couple with the mechanical behavior that is described by an extended critical state soil model for unsaturated soil through the specific volume. Considering the boundary condition and introducing an auxiliary coordinate, the problem is formulated to a system of first-order differential equations with three principal stress components and suction as basic unknowns, which is solved as an initial value problem. Parameter analyses are conducted to investigate the effects of suction and the overconsolidation ratio on the overall expansion responses, including the pressure-expansion response, the distribution of the stress components around the cavity, and the stress path of the soil during cavity expansion. The results reveal that the expansion pressures and the distribution of the stress components in unsaturated soils are generally higher than those in saturated soils due to the existence of suction.
Keywords
spherical cavity; suction; hydraulic behaviour; mechanical behavior; expansion responses;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mayne, P.W. (1991), "Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts", Soils Found., 31(2), 65-76. https://doi.org/10.3208/sandf1972.31.2_65.   DOI
2 Chen, S.L. and Abousleiman, Y.N. (2012), "Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil", Geotechnique, 62(5), 447-456. https://doi.org/10.1680/geot.11.P.027.   DOI
3 Yu, H.S. and Houlsby, G.T. (1991), "Finite cavity expansion in dilatant soils: Loading analysis", Geotechnique, 41(2), 173-183. https://doi.org/10.1680/geot.1991.41.2.173.   DOI
4 Hoek, E. (2001), "Big tunnels in bad rock", J. Geotech. Geoenviron. Eng., 127(9), 726-740. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(726).   DOI
5 Cudmani, R. and Osinov, V.A. (2001), "The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests", Can. Geotech. J., 38(3), 622-638. https://doi.org/10.1139/cgj-38-3-622.   DOI
6 Dafalias, Y.F. (1986), "An anisotropic critical state soil plasticity model", Mech. Res. Commun., 13(6), 341-347. https://doi.org/10.1016/0093-6413(86)90047-9.   DOI
7 Diao, H.J., Wu, Y.D., Liu, J. and Luo, R.P. (2015), "An analytical investigation of soil disturbance due to sampling penetration", Geomech. Eng., 9(6), 743-755. https://doi.org/10.12989/gae.2015.9.6.743.   DOI
8 Li, L., Li, J.P., Sun, D.A. and Gong, W.B. (2017), "Unified solution to drained expansion of a spherical cavity in clay and sand", Int. J. Geomech., 17(8), 04017028. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000909.   DOI
9 Zou, J.F. and Xia, M.Y. (2017), "A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress", Geomech. Eng., 12(3), 347-360. https://doi.org/10.12989/gae.2017.12.3.347.   DOI
10 Zou, J.F., Yang, T., Ling, W., Guo, W.J. and Huang, F.L. (2019), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. https://doi.org/10.12989/gae.2019.18.3.225.   DOI
11 Vrakas, A. and Anagnostou, G. (2015), "Finite strain elastoplastic solutions for the undrained ground response curve in tunneling", Int. J. Numer. Anal. Mech. Geomech., 39(7), 738-761. https://doi.org/10.1002/nag.2335.   DOI
12 Liang, F.Y., Liang, X., Zhang, H. and Wang, C. (2020), "Seismic response from centrifuge model tests of a scoured bridge with a pile-group foundation", J. Bridge Eng., 25(8), 04020054. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001594.   DOI
13 Li, C., Zou, J.F. and Sheng Y.M. (2020), "Undrained solution for cavity expansion in strength degradation and tresca soils", Geomech. Eng., 21(6), 527-536. https://doi.org/10.12989/gae.2020.21.6.527.   DOI
14 Li, L., Chen, H.H., Li, J.P. and Sun, D.A. (2021), "An elastoplastic solution to undrained expansion of a cylindrical cavity in SANICLAY under plane stress condition", Comput. Geotech., 132, 103990. https://doi.org/10.1016/j.compgeo.2020.103990.   DOI
15 Li, L., Xiang, Z.C., Zou, J.F. and Wang, F. (2019), "An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application", Geomech. Eng., 19(3), 217-227. https://doi.org/10.12989/gae.2019.19.3.217.   DOI
16 Li, C. and Zou, J.F. (2019), "Created cavity expansion solution in anisotropic and drained condition based on Cam-clay model", Geomech. Eng., 19(2), 141-151. https://doi.org/10.12989/gae.2019.19.2.141.   DOI
17 Liang, Q.G., Li, J., Wu, X.Y. and Zhou, A.N. (2016), "Anisotropy of Q2 loess in the Baijiapo Tunnel on the Lanyu Railway, China", B. Eng. Geol. Environ., 75(1), 109-124. https://doi.org/10.1007/s10064-015-0723-z.   DOI
18 Russell, A.R. and Khalili, N. (2006), "On the problem of cavity expansion in unsaturated soils", Comput. Mech., 37(4), 311-330. https://doi.org/10.1007/s00466-005-0672-7.   DOI
19 Chen, H.H., Li, L., Li, J.P. and Sun, D.A. (2020), "Elastoplastic solutions for cylindrical cavity expansion in unsaturated soils", Comput. Geotech., 123, 103569. https://doi.org/10.1016/j.compgeo.2020.103569.   DOI
20 Zhou, X.Y., Xu, Y.S., Sun, D.A., Tan, Y.Z. and Xu, Y.F. (2021), "Three-dimensional thermal-hydraulic coupled analysis in the nuclear waste repository", Ann. Nucl. Energy, 151, 107866. https://doi.org/10.1016/j.anucene.2020.107866.   DOI
21 Randolph, M.F. (2003), "Science and empiricism in pile foundation design", Geotechnique, 53(10), 847-875. https://doi.org/10.1680/geot.53.10.847.37518.   DOI
22 Alonso, E.E., Gens, A. and Josa, A. (1990), "A constitutive model for partially saturated soils", Geotechnique, 40(3), 405-430. https://doi.org/10.1680/geot.1990.40.3.405.   DOI
23 Liu, F., Yi, J.T., Cheng, P. and Yao, K. (2020), "Numerical simulation of set-up around shaft of XCC pile in clay", Geomech. Eng., 21(5), 489-501. https://doi.org/10.12989/gae.2020.21.5.489.   DOI
24 Charlez, P.A. and Roatesi, S. (1999), "A fully analytical solution of the wellbore stability problem under undrained conditions using a linearized Cam-Clay model", Oil Gas Sci. Technol., 54(5), 551-563. https://doi.org/10.2516/ogst:1999047.   DOI
25 Chen, G.H., Zou, J.F. and Qian, Z.H. (2019a). "An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils", Geomech. Eng., 17(1), 97-107. https://doi.org/10.12989/gae.2019.17.1.097.   DOI
26 Chen, H.H., Li, L. and Li, J.P. (2019b), "Stress transform method to undrained and drained expansion of a cylindrical cavity in anisotropic modified cam-clay soils", Comput. Geotech., 106, 128-142. https://doi.org/10.1016/j.compgeo.2018.10.016.   DOI
27 Chen, S.L. and Abousleiman, Y.N. (2013). "Exact drained solution for cylindrical cavity expansion in modified Cam Clay soil", Geotechnique, 63(6), 510-517. https://doi.org/10.1680/geot.11.P.088.   DOI
28 Collins, I.F., Pender, M.J. and Wang, Y. (1992), "Cavity expansion in sands under drained loading conditions", Int. J. Numer. Anal. Met., 16(1), 3-23. https://doi.org/10.1002/nag.1610160103.   DOI
29 Lukic, D.C., Prokic, A.D. and Brcic, S.V. (2014), "Stress state around cylindrical cavities in transversally isotropic rock mass", Geomech. Eng., 6(3), 213-233. https://doi.org/gae.2014.6.3.213.   DOI
30 Pournaghiazar, M., Russell, A.R. and Khalili, N. (2012), "Linking cone penetration resistances measuredin calibration chambers and the field", Geotech. Lett., 2, 26-35. https://doi.org/10.1680/geolett.11.00040.   DOI
31 Zhang, L.Y., Cao, P. and Radha, K.C. (2010), "Evaluation of rock strength criteria for wellbore stability analysis", Int. J. Rock Mech. Min. Sci., 47(8), 1304-1316. https://doi.org/10.1016/j.ijrmms.2010.09.001.   DOI
32 Vesic, A.C. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found. Div., 98, 265-290.   DOI
33 Carter, J.P., Booker, J.R. and Yeung, S.K. (1986), "Cavity expansion in cohesive frictional soils", Geotechnique, 36(3), 349-358. https://doi.org/10.1680/geot.1986.36.3.349.   DOI
34 Rezania, M., Nezhad, M.M., Zanganeh, H., Castro, J. and Sivasithamparam, N. (2017), "Modeling pile setup in natural clay deposit considering soil anisotropy, structure, and creep effects: case study", Int. J. Geomech., 17(3), 1-13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000774.   DOI
35 Salgado, R., Mitchell, J.K. and Jamiolkowski, M. (1997), "Cavity expansion and penetration resistance in sand", J. Geotech. Geoenviron. Eng., 123(4), 344-354. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).   DOI
36 Sheng, D., Fredlund, D.G. and Gens, A. (2008), "A new modelling approach for unsaturated soils using independent stress variables", Can. Geotech. J., 45(4), 511-534. https://doi.org/10.1139/T07-112.   DOI
37 Silvestri, V. and Abou-Samra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.   DOI
38 Sivasithamparam, N. and Castro, J. (2018), "Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: Theoretical solution", Acta. Geotech., 13(3), 729-746. https://doi.org/10.1007/s11440-017-0587-4.   DOI
39 Sivasithamparam, N. and Castro, J. (2020), "Undrained cylindrical cavity expansion in clays with fabric anisotropy and structure: Theoretical solution", Comput. Geotech., 120. https://doi.org/10.1016/j.compgeo.2019.103386.   DOI
40 Sun, D.A., Sheng, D., Li. X. and Scott W.S. (2008), "Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions", Comput. Geotech., 35(6), 845-852. https://doi.org/10.1016/j.compgeo.2008.08.002.   DOI
41 Wang, Y., Li, L., Li, J.P. and Sun, D.A. (2020), "Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis", Geomech. Eng., 21(3), 279-288. https://doi.org/10.12989/gae.2020.21.3.279.   DOI
42 Wheeler, S.J., Sharma, R.S. and Buisson, M.S.R. (2003), "Coupling of hydraulic hysteresis and stress-strain behavior in unsaturated soils", Geotechnique, 53(1), 41-54. https://doi.org/10.1680/geot.2003.53.1.41.   DOI
43 Yang, H. and Russell, A.R. (2015), "Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions", Int. J. Numer. Anal. Met., 39(18), 1975-2016. https://doi.org/10.1002/nag.2379.   DOI
44 Yang, C.Y., Chen, H.H., and Li, J.P. (2020). "Drained cylindrical cavity expansion analysis in anisotropic soils considering 3D strength" Geotech. Lett., 10, 346-352. https://doi.org/10.1680/jgele.19.00043.   DOI
45 Yang, C.Y., Chen, H.H., Li, J.P. and Li, L. (2021b), "Undrained spherical cavity expansion in unsaturated soils: Semi-analytical solution coupling hydraulic and mechanical behaviors", Int. J. Geomech., 21(6), 04021070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002028.   DOI
46 Yang, C.Y., Li, J.P., Li, L. and Sun D.A. (2021a), "Expansion responses of a cylindrical cavity in overconsolidated unsaturated soils: A semi-analytical elastoplastic solution", Comput. Geotech., 130, 103922. https://doi.org/10.1016/j.compgeo.2020.103922.   DOI