Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.1.001

Spherical cavity expansion in overconsolidated unsaturated soil under constant suction condition  

Wang, Hui (Department of Civil Engineering, Tongji University)
Yang, Changyi (Department of Civil Engineering, Tongji University)
Li, Jingpei (Department of Civil Engineering, Tongji University)
Publication Information
Geomechanics and Engineering / v.29, no.1, 2022 , pp. 1-11 More about this Journal
Abstract
A semi-analytical solution to responses of overconsolidated (OC) unsaturated soils surrounding an expanding spherical cavity under constant suction condition is presented. To capture the elastoplastic hydro-mechanical property of OC unsaturated soils, the unified hardening (UH) model for OC unsaturated soil is adopted in corporation with a soil-water characteristic curve (SWCC) and two suction yield surfaces. Taking the specific volume, radial stress, tangential stress and degree of saturation as the four basic unknowns, the problem investigated is formulated by solving a set of first-order ordinary differential equations with the help of an auxiliary variable and an iterative algorithm. The present solution is validated by comparing with available solution based on the modified Cam Clay (MCC) model. Parametric studies reveal that the hydraulic and mechanical responses of spherical cavity expanding in unsaturated soils are not only coupled, but also affected by suction and overconsolidation ratio (OCR) significantly. More importantly, whether hydraulic yield will occur or not depends only on the initial relationship between suction yield stress and suction. The presented solution can be used for calibration of some insitu tests in OC unsaturated soil.
Keywords
cavity expansion; hydro-mechanical responses; overconsolidated unsaturated soil; suction;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Zhou, X.Y., He, L.Q. and Sun, D.A. (2022), "Three-dimensional thermal modeling and dimensioning design in the nuclear waste repository", Int. J. Numer. Anal. Met., 46(4), 779-797. https://doi.org/10.1002/nag.3321.   DOI
2 Yang, C.Y., Chen, H.H., Li, J.P. and Li, L. (2021), "Undrained spherical cavity expansion in unsaturated soils: Semi-analytical solution coupling hydraulic and mechanical behaviors", Int. J. Geomech., 21(6), 04021070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002028.   DOI
3 Silvestri, V. and Abou-Samra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.   DOI
4 Russell, A.R. and Khalili, N. (2006), "On the problem of cavity expansion in unsaturated soils", Comput. Mech., 37(4), 311-330. https://doi.org/10.1007/s00466-005-0672-7.   DOI
5 Mayne, P.W. (1991), "Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts", Soils Found., 31(2), 65-76. https://doi.org/10.3208/sandf1972.31.2_65.   DOI
6 Rao, P.P., Chen, Q., Li, L., Nimbalkar, S. and Cui, J. (2017), "Elastoplastic solution for spherical cavity expansion in modified cam-clay soil under drained condition", Int. J. Geomech., 17(8). https://doi.org/10.1061/(asce)gm.1943-5622.0000925.   DOI
7 Rezania, M., Nezhad, M.M., Zanganeh, H., Castro, J. and Sivasithamparam, N. (2017), "Modeling pile setup in natural clay deposit considering soil anisotropy, structure, and creep effects: case study", Int. J. Geomech., 17(3), 1-13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000774.   DOI
8 Salgado, R. and Randolph, M.F. (2001), "Analysis of cavity expansion in sand." Int. J. Geomech., 1(2), 175-192. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:2(175).   DOI
9 Yang, C.Y., Li, J.P., Li, L. and Sun, D.A. (2020), "Expansion responses of a cylindrical cavity in overconsolidated unsaturated soils: A semi-analytical elastoplastic solution", Comput. Geotech., 130. https://doi.org/10.1016/j.compgeo.2020.103922.   DOI
10 Sun, D.A., Sheng, D.C., Xiang, L. and Sloan, S.W. (2008). "Elastoplastic prediction of hydromechanical behaviour of unsaturated soils under undrained conditions", Comput. Geotech., 35(6), 845-852. https://doi.org/10.1016/j.compgeo.2008.08.002.   DOI
11 Yao, Y.P., Niu, L. and Cui, W.J. (2014), "Unified hardening (UH) model for overconsolidated unsaturated soils", Can. Geotech. J., 51(7), 810-821. https://doi.org/10.1139/cgj-2013-0183.   DOI
12 Sivasithamparam, N. and Castro, J. (2018), "Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: Theoretical solution", Acta Geotech., 13(3), 729-746. https://doi.org/10.1007/s11440-017-0587-4.   DOI
13 Alonso, E.E., Gens, A. and Josa, A. (1990), "A constitutive model for partially saturated soils", Geotechnique, 40(3), 405-430. https://doi.org/10.1680/geot.1990.40.3.405.   DOI
14 Bolton, M.D. and Whittle, R.W. (1999), "A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests", Geotechnique, 49(1), 133-141. https://doi.org/10.1680/geot.1999.49.1.133.   DOI
15 Frydman, S. (2011), "Characterizing the geotechnical properties of natural, Israeli, partially cemented sands", Geomech. Eng., 3(4), 323-337. https://doi.org/10.12989/gae.2011.3.4.323.   DOI
16 Zhang, J.P., Liu, T. and Pei, J.Z. (2020), "Settlement characteristics of bridge approach embankment based on scale model test", J. Cent. South. Univ. T., 27, 1956-1964. https://doi.org/10.1007 /s11771-020-4422-y.   DOI
17 Zou, J.F., Yang, T., Ling, W., Guo, W.J. and Huang, F.L. (2019), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. https://doi.org/10.12989/gae.2019.18.3.225.   DOI
18 Agaiby, S.S. and Mayne, P.W. (2018), "Interpretation of piezocone penetration and dissipation tests in sensitive Leda clay at Gloucester test site", Can. Geotech. J., 55(12), 1781-1794. https://doi.org/10.1139/cgj-2017-0388.   DOI
19 Carter, J.P., Booker, J.R. and Yeung, S.K. (1986), "Cavity expansion in cohesive frictional soils", Geotechnique, 36(3), 349-358. https://doi.org/10.1680/geot.1986.36.3.349.   DOI
20 Chen, H.H. and Mo, P.Q. (2022), "An undrained expansion solution of cylindrical cavity in SANICLAY for K0-consolidated clays", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2021.10.016.   DOI
21 Chen, S.L. and Abousleiman, Y.N. (2012), "Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified cam clay soil", Geotechnique, 62(5), 447-456. https://doi.org/10.1680/geot.11.P.027.   DOI
22 Charlez, P.A. and Roatesi, S. (1999), "A fully analytical solution of the wellbore stability problem under undrained conditions using a linearized Cam-Clay model", Oil Gas Sci. Technol. 54(5), 551-563. https://doi.org/10.2516/ogst:1999047.   DOI
23 Gong, W.B., Yang, C.Y., Li, J.P. and Xu, L.C. (2020), "Undrained cylindrical cavity expansion in modified Cam-clay soil: a semi-analytical solution considering biaxial in-situ stresses", Comput. Geotech., 130, 103888. https://doi.org/10.1016/j.compgeo.2020.103888.   DOI
24 Li, C. and Zou, J.F. (2019), "Created cavity expansion solution in anisotropic and drained condition based on Cam-clay model", Geomech. Eng., 19(2), 141-151. https://doi.org/10.12989/gae.2019.19.2.141.   DOI
25 Chen, H.H. and Zhang, L.Y. (2022), "A machine learning-based method for predicting end-bearing capacity of rock-socketed shafts", Rock Mech. Rock Eng., https://doi.org/10.1007/s00603-021-02757-9.   DOI
26 Chen, H.H., Li, L., Li, J.P. and Sun, D.A. (2022), "A generic analytical elastic solution for excavation responses of an arbitrarily-shaped deep opening under biaxial in-situ stresses", Int. J. Geomech., 22(4), 04022023. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002335.   DOI
27 Collins, I.F., Pender, M.J. and Wang, Y. (1992), "Cavity expansion in sands under drained loading conditions", Int. J. Numer. Anal. Met., 16(1), 3-23. https://doi.org/10.1002/nag.1610160103.   DOI
28 Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. https://doi.org/10.12989/gae.2015.8.3.323.   DOI
29 Cheng, Y., Yang, H.W. and Sun, D.A. (2018), "Cavity expansion in unsaturated soils of finite radial extent", Comput. Geotech., 102, 216-228. https://doi.org/10.1016/j.compgeo.2018.06.013.   DOI
30 Chen, S.L. and Abousleiman, Y.N. (2013), "Exact drained solution for cylindrical cavity expansion in modified cam clay soil", Geotechnique, 63(6), 510-517. https://doi.org/10.1680/geot.11.P.088.   DOI
31 Collins, I.F. and Stimpson, J.R. (1994), "Similarity solutions for drained and undrained cavity expansions in soils", Geotechnique, 44(1), 21-34. https://doi.org/10.1680/geot.1994.44.1.21.   DOI
32 Cudmani, R. and Osinov, V.A. (2001), "The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests", Can. Geotech. J., 38(3), 622-638. https://doi.org/10.1139/cgj-38-3-622.   DOI
33 Diao, H.J., Wu, Y.D., Liu, J. and Luo, R.P., (2015), "An analytical investigation of soil disturbance due to sampling penetration", Geomech. Eng., 9(6), 743-755. https://doi.org/10.12989/gae.2015.9.6.743.   DOI
34 Liu, F., Yi, J.T., Cheng, P. and Yao, K. (2020), "Numerical simulation of set-up around shaft of XCC pile in clay", Geomech. Eng., 21(5), 489-501. https://doi.org/10.12989/gae.2020.21.5.489.   DOI
35 Palmer A.C. (1972), "Undrained plane-strain expansion of a cylindrical cavity in clay- simple interpretation of pressuremeter test", Geotechnique, 22(3), 451-457. https://doi.org/10.1680/geot.1972.22.3.451.   DOI
36 Russell, A.R. and Khalili, N. (2004), "Cavity expansion in unsaturated sands", Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla.
37 Vrakas, A. (2016), "A rigorous semi-analytical solution for undrained cylindrical cavity expansion in critical state soils", Int. J. Numer. Anal. Meth. Geomech., 40(15), 2137-2160. https://doi.org/10.1002/nag.2529.   DOI
38 Gong, W.B., Li, J.P., Li, L. and Zhang, S. (2017), "Evolution of mechanical properties of soils subsequent to a pile jacked in natural saturated clays", Ocean Eng., 136, 209-217. https://doi.org/10.1016/j.oceaneng.2017.03.020.   DOI
39 Hoek, E. (2001). "Big tunnels in bad rock." J. Geotech. Geoenviron. Eng., 127(9), 726-740. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(726).   DOI
40 Lukic, D.C., Prokic, A.D. and Brcic, S.V. (2014), "Stress state around cylindrical cavities in transversally isotropic rock mass", Geomech. Eng., 6(3), 213-233. https://doi.org/gae.2014.6.3.213.   DOI
41 Yang, H. and Russell, A.R. (2015), "Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions", Int. J. Numer. Anal. Met., 39(18), 1975-2016. https://doi.org/10.1002/nag.2379.   DOI