• Title/Summary/Keyword: substrate thickness

Search Result 1,911, Processing Time 0.03 seconds

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Effect of Surface Roughness, Thickness and Current Density on Surface Resistance of Electro-deposited Copper Layer

  • Kim, Y.M.;Cho, S.K.;Choi, Y.;Lee, J.Y.;Kim, M.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.179-179
    • /
    • 2013
  • Surface resistance of electro-deposited copper with its thickness, current density and surface roughness was determined by using a 4-point probe analyzer. The copper was prepared electrochemically on 316 stainless steel substrate in copper sulfate solution at the condition of $1A/dm^2$, 298 K, and 6.5 cm-electrode distance. The surface resistance of the copper sheet in the range of $0.93-0.97{\Omega}$ increased with the copper thickness in the range of $21-70{\mu}m$. The surface resistance in the range of $0.963-1.009{\Omega}$ also increased with current density in the range of $0.5-2A/dm^2$. The increased surface resistances corresponded to 11% for thickness and 25% for current density, respectively.

  • PDF

Growth of high quality ZnTe epilayers used for an far-infrared sensor and radiation detector

  • Kim, B. J.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.105-110
    • /
    • 2002
  • ZnTe epilayers have been successfully grown on (100) CaAs substrate by hot wall epitaxy (HWE) with Zn reservoir. Optimum growth condition has been determined by a four-crystal rocking curve (FCRC). It was found that Zn partial pressure from h reservoir has a strong influence on the quality of grown films. Under the determined optimum growth condition, ZnTe epitaxial films with thickness of 0.72~24.8${\mu}m$ were grown for studying the effect of the thickness on crystalline quality. The FCRC results indicated that the quality of ZnTe films becomes higher rapidly with increase of thickness up to 6${\mu}{\textrm}{m}$. The best value of the FWHM of the few crystal rocking curve, 66 arcsec, was obtained on the film with $12{\mu}m$ in thickness. Until now, this result shows the best quality of ZnTe/GaAs films in reported.

Optical and Electrical Properties of Oxide Multilayers

  • Han, Sangmin;Yu, Jiao Long;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.235-237
    • /
    • 2016
  • Oxide/metal/oxide (OMO) thin films were fabricated using amorphous indium-gallium-zinc-oxide (a-IGZO) and an Ag metal layer on a glass substrate at room temperature. The optical and electrical properties of the a-IGZO/Ag/a-IGZO samples changed systemically depending on the thickness of the Ag layer. The transmittance in the visible range tends to decrease as the Ag thickness increases while the resistivity, carrier concentration, and Hall mobility tend to improve. The a-IGZO/Ag (13 nm)/a-IGZO thin film with the optimum Ag thickness showed an average transmittance (Tav) of 71.7%, resistivity of 6.63 × 10−5 Ω·cm and Hall mobility of 15.22 cm2V−1s−1.

Influence of Ag thickness on properties of AZO/Ag/AZO Multi-layer Thin Films (AZO/Ag/AZO 다층박막의 Ag두께에 따른 특성 연구)

  • Yeon, Je ho;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • AZO/Ag/AZO multi-layer films deposited on glass substrate by RF magnetron sputtering and thermal evaporator have a much better electrical properties than Al-doped ZnO thin films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. The optimum thickness of Ag layers was determined to be $90{\AA}$ for high optical transmittance and good electrical conductivity. The Ag layers thickness $90{\AA}$ is an optical transmittance greater than 80% of visible light and the obtained multilayer thin film with the low resistivity of $8.05{\times}10-3{\Omega}cm$ and the low sheet resistance $5.331{\Omega}/sq$. Applying to TCO and Solar electrode will improve efficiency.

  • PDF

The Effect of the substrate temperature on the properties of GZOB films by DC magnetron sputtering (DC 마그네트론 스퍼터링법으로 증착한 GZOB 박막의 기판온도에 따른 특성)

  • Lee, Jong-Hwan;Yu, Hyun-Kyu;Lee, Kyung-Chun;Hur, Won-Young;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.106-107
    • /
    • 2009
  • In this study, We investigated the effects of substrate temperature on the electrical and optical properties of Ga-, B-codoped ZnO(GZOB) thin films. GZOB thin films were deposited on glass substrate with various substrate temperature in the range from R.T. to $500\;^{\circ}C$ by DC magnetron sputtering. In the reslt, GZOB films at $400\;^{\circ}C$ exhibited a low resistivity value of $8.67\;{\times}\;10^{-4}\;{\Omega}-cm$, and a visible transmission of 80% with a thickness of 300 nm. This result indicated that the addition of Ga and B in ZnO films leads to the improvement of conductivity and transparent. From the result, we can confirm the possibility of the application as transparent conductive electrodes.

  • PDF

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

Detwinning Monoclinic Phase BiMnO3 Thin Film

  • Dash, Umasankar;Raveendra, N.V.;Jung, Chang Uk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.168-172
    • /
    • 2016
  • $BiMnO_3$ has been a promising candidate as a magnetoelectric multiferroic while there have been many controversial reports on its ferroelectricity. The detailed analysis of its film growth, especially the growth of thin film having monoclinic symmetry has not been reported. We studied the effect of miscut angle, the substrate surface, and film thickness on the symmetry of $BiMnO_3$ thin film. A flat $SrTiO_3$ (110) substrate resulted in a thin film with three domains of $BiMnO_3$ and 1 degree miscut in the $SrTiO_3$ (110) substrate resulted in dominant domain preference in the $BiMnO_3$ thin film. The larger miscut resulted in a nearly perfect detwinned $BiMnO_3$ film with a monoclinic phase. This strong power of domain selection due to the step edge of the substrate was efficient even for the thicker film which showed a rather relaxed growth behavior along the $SrTiO_3$ [1-10] direction.