Growth of high quality ZnTe epilayers used for an far-infrared sensor and radiation detector

  • Kim, B. J. (Insitute for Advanced Materials Processing, Tohoku University)
  • Published : 2002.12.01

Abstract

ZnTe epilayers have been successfully grown on (100) CaAs substrate by hot wall epitaxy (HWE) with Zn reservoir. Optimum growth condition has been determined by a four-crystal rocking curve (FCRC). It was found that Zn partial pressure from h reservoir has a strong influence on the quality of grown films. Under the determined optimum growth condition, ZnTe epitaxial films with thickness of 0.72~24.8${\mu}m$ were grown for studying the effect of the thickness on crystalline quality. The FCRC results indicated that the quality of ZnTe films becomes higher rapidly with increase of thickness up to 6${\mu}{\textrm}{m}$. The best value of the FWHM of the few crystal rocking curve, 66 arcsec, was obtained on the film with $12{\mu}m$ in thickness. Until now, this result shows the best quality of ZnTe/GaAs films in reported.

Keywords

References

  1. Appl.Phys.Lett. v.62 Heavy p-doping of ZnTe by molecular beam epitaxy using a nitrogen plasma source J.Han;T.S.Stavrinides;M.Kobayashi;R.L.Gunshor;M.M.Hagerott;A.V.Nurmikko https://doi.org/10.1063/1.108568
  2. Widegap Ⅱ-Ⅵ compounds for Optoelectronic Applications H.E.Ruda(Ed.)
  3. J.Appl.Phys. v.46 Molecular beam epitaxy of Ⅱ-Ⅵ compounds D.L. Smith;V.Y. Pickhardt https://doi.org/10.1063/1.321915
  4. J. Crystal Growth v.117 Lattice strain near interface of MBE-grown ZnTe on GaAs K.Kumazaki;F.Iida;K. Imai https://doi.org/10.1016/0022-0248(92)90761-7
  5. J. Crystal Growth v.88 ZnTe layers grown on GaAs substrates by low pressure MOCVD H.Shtrikman;A.Raizman;M.oron;D. Eger https://doi.org/10.1016/0022-0248(88)90150-9
  6. J.Vac.sic. Technol. A v.10 Metalorganic chemical vapor deposition growth of ZnTe on CaAs G.S. Tompa;C.J. Summers https://doi.org/10.1116/1.577692
  7. J.Appl.Phys. v.66 Atomic layer epitaxial growth of ZnSe, ZnTe, and ZnSe-ZnTe strained-layer superlattices S. Dosho;Y. Takemura;M. Konagai;K. Takahashi https://doi.org/10.1063/1.344225
  8. Semiconductor Sci. Technol. v.6 Photoluminescence and excitation spectroscopy of ZnTe/GaAs epilayers grown by hot-wall epitaxy E. Abramolf;K. Hingerl;A. Pesek;H. Sitter https://doi.org/10.1088/0268-1242/6/9A/014
  9. J. Appl. Phys. v.72 Characterization of hot wall epitaxy grown ZnTe layers P. Link;T. Schmidt;S. Bauer;H.P. Wagner;H. Leiderer;W. Gehardt https://doi.org/10.1063/1.352292
  10. Thin Solid Fillms v.49 Hot wall epitaxy A.Lopezo-Otero
  11. J. Crystal Growth v.187 HWE growth and evaluation of CdTe epitaxial films on GaAs J.F. Wang;K. Kikuchi;B.H. Koo;Y. Ishikawa;W. Uchida;M. Isshiki https://doi.org/10.1016/S0022-0248(98)00022-0
  12. J. Crystal Growth v.180 Characterization and growth of high quality ZnTe epilayers by hot-wall epitaxy S.N. Nam;J.K. Rhee;B.S. O;K.S. Lee;Y.D. Choi;G.N. Jeon;C.H. Lee https://doi.org/10.1016/S0022-0248(97)00193-0
  13. Semiconductor Sci.Technol. v.6 Photoluminescence and excitation spectroscopy of ZnTe/GaAs epilayers grown by hot-wall epitaxy E. Abramof;K. Hingerl;A. pesek;H.Sitter https://doi.org/10.1088/0268-1242/6/9A/014
  14. Phys. Rev. v.B46 Effects of thermal strain on the optical properties of heteroepitaxial ZnTe Y.Zhang;B.J. Skromme;F.S. Turco-Sandroff
  15. J.Crystal Growth v.101 CdTe and CdZnTe crystal growth by horizontal bridgman technique P. Cheuvart;U.EL-hanami;D.Schneider;R.Triboulet https://doi.org/10.1016/0022-0248(90)90980-Y
  16. J. Mining Master. Process. Inst. Japan v.110 reparation of High purity cadmun by vacuum distillation and Zone-Melting Method Y. Ishikawa;B. Yang;K. Mimura;T. Tomizono;M. Isshiki https://doi.org/10.2473/shigentosozai.110.1175
  17. Handbook of Thin film Technology L.I. Maissel;R. Glang
  18. Journal of the Korean Society of Machine Tool Engineer v.8 no.2 The Prediction of Crack Growth Retardation Behavior by Crack Tip Branching Effects K.-Y.KUN