• Title/Summary/Keyword: substrate spectrum

Search Result 301, Processing Time 0.027 seconds

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

Evaluating Piezoelectric Thin Film Characteristics Using Resonance Spectrum Method (공진주파수 스펙트럼법을 이용한 압전박막의 특성 평가)

  • Choi Joon Young;Chang Dong Hoon;Kang Seong Jun;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.477-480
    • /
    • 2004
  • We studied the characteristics of impedance and electromechanical coupling coefficient in ZnO and AIN thin films by using resonance frequency spectrum method. The response peak of impedance decreased with the decrease of thickness of piezoelectrics, the number of mode of response peak increased with the increase of substrate thickness. An error of $k_{t}^{2}$ estimated from input $k_{t}^{2}$ increased as the thickness of piezoelectrics decreased and the thickness of substrate increased. Also, the error was increased in case of a large acoustic impedance of substrate. It was found that the composite resonator operating in optimized condition could be designed through the resonance frequency spectrum analysis of composited resonator consisted of piezoelectric thin film and substrate.

  • PDF

Influence of Residual Oxygen on the growth of AlN Thin Films with Substrate Temperature (기판 온도 변화에 따른 AlN 박막 성장에 잔류 산소가 미치는 영향)

  • Kim, Byoung-Kyun;Lee, Eul-Tack;Kim, Eung-Kwon;Jeong, Seok-Won;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.463-467
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Au electrodes by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different substrate temperature. It was found that substrate temperature was varied in the range up to $400^{\circ}C$, highly c-axis oriented film can be obtained at $300^{\circ}C$ with full width at half maximum (FWHM) $3.1^{\circ}$. Increase in surface roughness from 3.8 nm to 5.9 nm found to be associated with increase in grain size, with substrate temperature; however, the AlN film fabricated at $400^{\circ}C$ exhibited a granular type of structure with non-uniform grains. The Al 2p and N 1s peak in the X-ray photoelectron spectroscopy (XPS) spectrum confirmed the formation of Al-N bonds. The XPS spectrum also indicated the presence of oxynitrides and oxides, resulting from the presence of residual oxygen in the vacuum chamber. It is concluded that the AlN film deposited at substrate temperature of $300^{\circ}C$ exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

A study on the dependance of substrate material and the properties of electron beam radiation in plasma polymerized films (플라즈마 중합막의 기판재질 의존성과 전자선 조사 특성에 대한 연구)

  • 김종택;박수홍;김형권;김병수;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.410-414
    • /
    • 1998
  • The dependence of substrate material and electrode position were studied by radiation analysis of Ar discharge, and electron beam radiation was applied to confirm the crosslinked structure of the film. Comparing the conductor substrate with the insulator substrate, the former had lager peak density of radiation spectrum than latter. From the result of peak density of metastable state and ion, it was confirmed that the peak density of ion was falling to the down limit with increasing the distance of electrode by analyzing the radiation spectrum of polymerized films. When the polymerized styrene films was exposed to electron beam, it was possible to form a pattern with the insulator substrate.

  • PDF

A study on Cu(In,Ga)Se2 thin film fabarication using to co-evaporation (동시진공증발법을 이용한 Cu(In,Ga)Se2 박막 제작에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2273-2279
    • /
    • 2012
  • This research is based on fabricating Cu(In,Ga)$Se_2$ thin-film by co-evaporation method. On $1^{st}$ - stage, $In_2Se_3$ phase appeared when the substrate temperature reached to $400^{\circ}C$, however, there was small effect between the substrate temperature and absorbency spectrum on $2^{nd}$, $3^{rd}$ - stage because the average thickness of the thin-film was $1{\mu}m$ or higher. SEM and XRD was measured on $2^{nd}$ and $3^{rd}$ stage and it showed as the substrate temperature increases, the density of the crystal structure increased with the decreament of the vacancy. Furthermore, the formation of Cu(In0.7Ga0.3)$Se_2$ phase showed at $480^{\circ}C$ and $500^{\circ}C$.

Effect of SiO2 Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes (실리콘 기판의 산화층이 다중벽 탄소나노튜브 성장에 미치는 영향)

  • Kim, Geum-Chae;Lee, Soo-Kyoung;Kim, Sang-Hyo;Hwang, Sook-Hyun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.50-53
    • /
    • 2009
  • Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and $SiO_2$/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at $900^{\circ}C$. It was found that the diameter of the MWNTs on the Si substrate sample is approximately $5{\sim}10nm$ larger than that of a $SiO_2$/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.

A Study on the Evaluation of Piezoelectric Thin Film Characteristics in Composite Resonator Structure Using Resonance Spectrum Method (공진주파수 스펙트럼법을 이용한 Composite Resonator 구조에서 압전박막의 특성 평가에 대한 연구)

  • Choi Joon Young;Chang Dong Hoon;Kang Seong Jun;Yoon Yung Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • We studied the characteristics of impedance and electromechanical coupling coefficient in ZnO and AIN thin films by using resonance frequency spectrum method. The response peak of impedance decreased with the decrease of thickness of piezoelectrics, the number of mode of response peak decreased with the decrease of substrate thickness. An error of Kt² estimated from input Kt² increased as the thickness of piezoelectrics decreased and the thickness of substrate increased. Also, the error was increased in case of a large acoustic impedance of substrate. It was found that the composite resonator operating in optimized condition could be designed through the resonance frequency spectrum analysis of composited resonator consisted of piezoelectric thin film and substrate.

A Study on the Deposition Transfer state of Organic Thin Films(Arac.acid) (유기박막(Arac.acid)의 누적전이상태에 관한 연구)

  • Chung, Hun-Sang;Song, Jin-Won;Lee, Kyung-Sup;Jun, Yon-Su;Chon, Woo-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.57-60
    • /
    • 2001
  • The characterization of organic Metal/Insulator/Metal(MIM) devices were investigated from LB films. The physicochemical properties of the LB films were by UV absorption spectrum and AFM. We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 2, 10, 30[mN/ml The stable images are probably due to a strong interaction between the monolayer film and glass substrate. We are unable to obtain molecule resolution in images of the films but did see a marked contrast between images of the bare substrate and those with the network structure film deposited onto it.

  • PDF

Characteristics of $ZnGa_2$$O_4$phosphors thin film for FED(Field Emission Display) by RF Magnetron Sputtering (RF Magnetron Sputtering법에 의한 FED용 $ZnGa_2$$O_4$형광체의 특성분석)

  • 한진만;박용민;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.776-780
    • /
    • 2000
  • ZnGa$_2$O$_4$thin films were prepared on Si(100) wafer in terms of RF power, substrate temperatures and Ar/O$_2$flow rate by RF Magnetron Sputtering. Photoluminescence(PL) measurement was employed to observe the emission spectra of ZnGa$_2$O$_4$films. The influences of various deposition parameters on the properties of grown films were studied. The optimum substrate deposition temperature for luminous characteristics was about 50$0^{\circ}C$ in this investigation. PL spectrum of ZnGa$_2$O$_4$ thin films showed broad band luminescence spectrum.

  • PDF

Impact of Anti-Reflective Coating on Silicon Solar Cell and Glass Substrate : A Brief Review

  • Zahid, Muhammad Aleem;Khokhar, Muhammad Quddamah;Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • The most important factor in enhancing the performance of an optical device is to minimize reflection and increasing transmittance of light for a broad wavelength range. The choice of appropriate coating material is crucial in decreasing reflection losses at the substrate. The purpose of this review is to highlight anti-reflection coating (ARC) materials that can be applied to silicon solar cell and glass substrate for minimizing reflection losses. The optical and electrical behavior of ARC on a substrate is highly dependent on thickness and refractive index (RI) of ARC films that are being deposited on it. The coating techniques and performance of single and multi-layered ARC films after coated on a substrate in a wide range of wavelength spectrum will be studied in the paper.