Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.1.050

Effect of SiO2 Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes  

Kim, Geum-Chae (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Lee, Soo-Kyoung (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, Sang-Hyo (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Hwang, Sook-Hyun (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Choi, Hyon-Kwang (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Jeon, Min-Hyon (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Publication Information
Korean Journal of Materials Research / v.19, no.1, 2009 , pp. 50-53 More about this Journal
Abstract
Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and $SiO_2$/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at $900^{\circ}C$. It was found that the diameter of the MWNTs on the Si substrate sample is approximately $5{\sim}10nm$ larger than that of a $SiO_2$/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.
Keywords
multi-walled carbon nanotubes; dye-sensitized solar cells; $SiO_2$ layer; energy conversion efficiency;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc., 144, 876(1997)   DOI
2 T. Hoshikawa, M. Yamada, R. Kikuchi and K. Eguchi, J. Electrochem. Soc., 152, E68 (2005)   DOI   ScienceOn
3 H. J. Kim, D. Y. Lee, B. K. Koo, W. J. Lee, J. S. Song and D. Y. Lee, J. of KIEEME, 17, 1090 (2004)
4 R. L. Vander Wal and L. J. Hall, Carbon, 41, 659, (2003)   DOI   ScienceOn
5 A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Science, 285, 692 (1999)   DOI   ScienceOn
6 M. A. Green, K. Emery, D. L. King, Y. Hishikawa and W. Warta, Prog. Photovolt.: Res. Appl., 15, 35 (2007)   DOI   ScienceOn
7 M. Gratzel, J. Inorg. Chem., 44, 6841 (2005)   DOI   ScienceOn
8 B. O'Regan, M. Gratzel, Nature, 353, 737 (1991)   DOI
9 M. K. Nazeeruddin, A. Kay, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993)   DOI   ScienceOn
10 A. Hauch and A. Georg, Electrochim. Acta, 46, 3457 (2001)   DOI   ScienceOn
11 A. Kay and M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99, (1996)   DOI   ScienceOn
12 D. F. Johnson, B. J. Craft and S. M. Jaffe, J. Nanopart. Res., 3, 63, (2001)   DOI   ScienceOn