DOI QR코드

DOI QR Code

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei (Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University) ;
  • Wang, Yali (Department of Biochemistry, University of Washington)
  • Received : 2019.07.04
  • Accepted : 2019.09.17
  • Published : 2020.01.28

Abstract

With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

Keywords

References

  1. Abrahamson MJ, Vazquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS. 2012. Development of an amine dehydrogenase for synthesis of chiral amines. Angew. Chem. Int. Ed Engl. 51: 3969-3972. https://doi.org/10.1002/anie.201107813
  2. Ye LJ, Toh HH, Yang Y, Adams JP, Snajdrova R, Li Z. 2015. Engineering of amine dehydrogenase for asymmetric reductive amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase. ACS Catal. 5: 1119-1122. https://doi.org/10.1021/cs501906r
  3. Helmchen G, Pfaltz A. 2000. Phosphinooxazolines a new class of versatile, modular P, N-ligands for asymmetric catalysis. Acc. Chem. Res. 33: 336-345. https://doi.org/10.1021/ar9900865
  4. Sheldon RA, Pereira PC. 2017. Biocatalysis engineering: the big picture. Chem. Soc. Rev. 46: 2678-2691. https://doi.org/10.1039/C6CS00854B
  5. Sun H, Zhang H, Ang EL, Zhao H. 2017. Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorg Med Chem. 26: 1275-1284. https://doi.org/10.1016/j.bmc.2017.06.043
  6. ZN You QC, SC Shi, M Zheng, J Pan, XL Qian, CX Li, et al. 2018. Switching cofactor dependence of $7{\beta}$-hydroxysteroid dehydrogenase for cost-effective production of ursodeoxycholic acid. ACS Catal. 9: 466-473. https://doi.org/10.1021/acscatal.8b03561
  7. Xu JHg, X, Qin Z, Li FL, Zeng BB, Zheng GW, Xu JH. 2018. Development of an engineered ketoreductase with simultaneously improved thermostability and activity for making a bulky atorvastatin precursor. ACS Catal. 9: 147-153. https://doi.org/10.1021/acscatal.8b03382
  8. Bommarius BR, Schurmann M, Bommarius AS. 2014. A novel chimeric amine dehydrogenase shows altered substrate specificity compared to its parent enzymes. Chem. Commun. (Camb) 50: 14953-14955. https://doi.org/10.1039/c4cc06527a
  9. Jarvo ER, Miller SJ. 2002. Amino acids and peptides as asymmetric organocatalysts. Tetrahedron 58: 2481-2495. https://doi.org/10.1016/S0040-4020(02)00122-9
  10. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, et al. 2010. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329: 305-309. https://doi.org/10.1126/science.1188934
  11. Pollard DJ, Woodley JM. 2007. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 25: 66-73. https://doi.org/10.1016/j.tibtech.2006.12.005
  12. Constable DJ, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman RJ, et al. 2007. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem. 9: 411-420. https://doi.org/10.1039/b703488c
  13. Mutti FG, Knaus T, Scrutton NS, Breuer M, Turner NJ. 2015. Conversion of alcohols to enantiopure amines through dualenzyme hydrogen-borrowing cascades. Science 349: 1525-1529. https://doi.org/10.1126/science.aac9283
  14. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, et al. 2004. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43: 788-824. https://doi.org/10.1002/anie.200300599
  15. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, et al. 2004. Industrielle Verfahren zur Herstellung von optisch aktiven Zwischenprodukten. Angew. Chem. 116: 806-843. https://doi.org/10.1002/ange.200300599
  16. Woodley JM. 2008. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol. 26: 321-327. https://doi.org/10.1016/j.tibtech.2008.03.004
  17. Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, et al. 2010. A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem. 12: 81-86. https://doi.org/10.1039/B919115C
  18. Nugent TC, El-Shazly M. 2010. Chiral amine synthesis- recent developments and trends for enamide reduction, reductive amination, and imine reduction. Adv. Synth. Catal. 352: 753-819. https://doi.org/10.1002/adsc.200900719
  19. Hohne M, Bornscheuer UT. 2009. Biocatalytic routes to optically active amines. ChemCatChem. 1: 42-51. https://doi.org/10.1002/cctc.200900110
  20. Koszelewski D, Lavandera I, Clay D, Guebitz GM, Rozzell D, Kroutil W. 2008. Formal asymmetric biocatalytic reductive amination. Angew. Chem. Int. Ed. 47: 9337-9340. https://doi.org/10.1002/anie.200803763
  21. Hummel W, Weiss N, Kula M-R. 1984. Isolation and characterization of a bacterium possessing L-phenylalanine dehydrogenase activity. Arch. Microbiol. 137: 47-52. https://doi.org/10.1007/BF00425806
  22. Chen S, Engel PC. 2009. Efficient screening for new amino acid dehydrogenase activity: Directed evolution of Bacillus sphaericus phenylalanine dehydrogenase towards activity with an unsaturated non-natural amino acid. J. Biotechnol. 142: 127-134. https://doi.org/10.1016/j.jbiotec.2009.03.005
  23. Hanson RL, Howell JM, LaPorte TL, Donovan MJ, Cazzulino DL, Zannella V, et al. 2000. Synthesis of allysine ethylene acetal using phenylalanine dehydrogenase from Thermoactinomyces intermedius. Enzyme Microb. Technol. 26: 348-358. https://doi.org/10.1016/S0141-0229(99)00175-1
  24. Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, et al. 2005. N-Methyl-l-amino acid dehydrogenase from Pseudomonas putida. FEBS J. 272: 1117-1123. https://doi.org/10.1111/j.1742-4658.2004.04541.x
  25. Randell EW, Lehotay DC. 1996. An automated enzymatic method on the Roche COBAS MIRA TM S for monitoring phenylalanine in dried blood spots of patients with phenylketonuria. Clin. Biochem. 29: 133-138. https://doi.org/10.1016/0009-9120(95)02033-0
  26. Hoehne M, Kuehl S, Robins K, Bornscheuer UT. 2008. Efficient asymmetric synthesis of chiral amines by combining transaminase and pyruvate decarboxylase. ChemBioChem. 9: 363-365. https://doi.org/10.1002/cbic.200700601
  27. Iwasaki A, Yamada Y, Kizaki N, Ikenaka Y, Hasegawa J. 2006. Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp. KNK168. Appl. Microbiol. Biotechnol. 69: 499-505. https://doi.org/10.1007/s00253-005-0002-1
  28. Yun H, Kim J, Kinnera K, Kim B-G. 2006. Synthesis of enantiomerically pure trans-(1R, 2R)-and cis-(1S, 2R)-1- amino-2-indanol by lipase and ${\omega}$-transaminase. Biotechnol Bioeng. 93: 391-395. https://doi.org/10.1002/bit.20721
  29. Wilks HM, Hart KW, Feeney R, Dunn CR, Muirhead H, Chia WN, et al. 1988. A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242: 1541-1544. https://doi.org/10.1126/science.3201242
  30. Chen R, Greer A, Dean AM. 1996. Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase. Proc. Natl. Acad. Sci USA 93: 12171-12176. https://doi.org/10.1073/pnas.93.22.12171
  31. Vick JE, Schmidt DM, Gerlt JA. 2005. Evolutionary potential of $({\beta}/{\alpha})$ 8-barrels: in vitro enhancement of a "new" reaction in the enolase superfamily. Biochemistry 44: 11722-11729. https://doi.org/10.1021/bi050963g
  32. Vanhooke JL, Thoden JB, Brunhuber NM, Blanchard JS, Holden HM. 1999. Phenylalanine dehydrogenase from Rhodococcus sp. M4: high-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry 38: 2326-2339. https://doi.org/10.1021/bi982244q
  33. Brunhuber NM, Thoden JB, Blanchard JS, Vanhooke JL. 2000. Rhodococcus L-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifity. Biochemistry 39: 9174-9187. https://doi.org/10.1021/bi000494c
  34. Carter JL, Bekhouche M, Noiriel A, Blum LJ, Doumeche B. 2014. Directed evolution of a formate dehydrogenase for increased tolerance to ionic liquids reveals a new site for increasing the stability. ChemBioChem. 15: 2710-2718. https://doi.org/10.1002/cbic.201402501
  35. Abrahamson MJ, Wong JW, Bommarius AS. 2013. The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines. Adv. Synth. Catal. 355: 1780-1786. https://doi.org/10.1002/adsc.201201030
  36. Jiang W, Chen L, Yuan S, Li B, Liu Z. 2014. A novel serine hydroxymethyltransferase from Arthrobacter nicotianae: characterization and improving catalytic efficiency by rational design. BMC Biotechnol. 14: 93. https://doi.org/10.1186/s12896-014-0093-9
  37. Bloom JD, Arnold FH. 2009. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. USA 106: 9995-10000. https://doi.org/10.1073/pnas.0901522106
  38. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
  39. Sekimoto T, Fukui T, Tanizawa K. 1994. Involvement of conserved lysine 68 of Bacillus stearothermophilus leucine dehydrogenase in substrate binding. J. Biol. Chem. 269: 7262-7266. https://doi.org/10.1016/S0021-9258(17)37277-0
  40. Kuroda S, Tanizawa K, Tanaka H, Soda K, Sakamoto Y. 1990. Alanine dehydrogenases from two Bacillus species with distinct thermostabilities: molecular cloning, DNA and protein sequence determination, and structural comparison with other NAD $(P)^{+}$-dependent dehydrogenases. Biochemistry 29: 1009-1015. https://doi.org/10.1021/bi00456a025
  41. Moon K, Piszkiewicz D, Smith EL. 1972. Glutamate Dehydrogenase: amino-acid sequence of the bovine enzyme and comparison with that from chicken liver. Proc. Natl. Acad. Sci. USA 69: 1380-1383. https://doi.org/10.1073/pnas.69.6.1380
  42. Mcpherson MJ, Wootton JC. 1983. Complete nucleotide sequence of the Escherichia coli gdhA gene. Nucleic Acids Res. 11: 5257-5266. https://doi.org/10.1093/nar/11.15.5257
  43. Kataoka K, Tanizawa K, Fukui T, Ueno H, Yoshimura T, Esaki N, et al. 1994. Identification of active site lysyl residues of phenylalanine dehydrogenase by chemical modification with methyl acetyl phosphate combined with site-directed mutagenesis. J. Biochem. 116: 1370. https://doi.org/10.1093/oxfordjournals.jbchem.a124689
  44. Kataoka K, Takada H, Yoshimura T, Furuyoshi S, Esaki N, Ohshima T, et al. 1993. Site-directed mutagenesis of a hexapeptide segment involved in substrate recognition of phenylalanine dehydrogenase from Thermoactinomyces intermedius. J. Biochem. 114: 69-75. https://doi.org/10.1093/oxfordjournals.jbchem.a124142
  45. Asano Y, Tanetani M. 1998. Thermostable phenylalanine dehydrogenase from a mesophilic Microbacterium sp. strain DM 86-1. Arch. Microbiol. 169: 220-224. https://doi.org/10.1007/s002030050564
  46. Drug Enforcement Administration. 2012. Department of Justice. Establishment of drug codes for 26 substances. Final rule. Federal register, 2013. 78(3): 664.

Cited by

  1. NAD(P)H‐Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl‐Containing Compound Spectrum vol.363, pp.2, 2020, https://doi.org/10.1002/adsc.202000870