• Title/Summary/Keyword: substrate interactions

Search Result 144, Processing Time 0.03 seconds

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Single-walled carbon nanotubes directly-grown from orientated carbon nanorings

  • Tojo, Tomohiro;Inada, Ryoji;Sakurai, Yoji;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.27
    • /
    • pp.35-41
    • /
    • 2018
  • Surfactant-wrapped separation methods of metallic and semiconducting single-walled carbon nanotubes (SWCNTs) can result in large changes in intrinsic physical and chemical properties due to electronic interactions between a nanotube and a surfactant. Our approach to synthesize SWCNTs with an electronic feature relied on utilizing carbon nanorings, [n] cycloparaphenylenes ([n]CPPs), which are the fundamental unit of armchair type SWCNTs (a-SWCNTs) that possess a metallic feature without any surfactants. To obtain long tubular structures from [n]CPPs, the host-guest complexes formed with well-aligned [n]CPP hosts and various fullerene guests on a silicon substrate were pyrolyzed under an ethanol gas flow at a high temperature with focused-ultraviolet laser irradiation. The pyrolyzed [n]CPPs were observed to transform from nanorings to tubular structures with 1.5-1.7 nm diameters corresponding to the employed diameter of [n]CPPs. Our approach suggests that [n]CPPs are useful for structure-controlled synthesis of SWCNTs.

Genetic Polymorphisms in Drug Transporters and Regulatory Xenobiotic Receptors in Korean Population

  • Lee, Sang-Seop;Shin, Jae-Gook
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2004.05a
    • /
    • pp.27-29
    • /
    • 2004
  • Drug transporters play an essential role in the absorption, distribution and elimination of clinical drugs, nutrients and toxicants. The importance of the transporters is exampled by therapeutic failure in cancer chemotherapy that is mainly caused by the overexpression of multidrug resistance (MDR)-related transporters. In addition, the transporters may involve in drug-drug interactions that lead to serious adverse drug responses and some transporters also contribute to inter-individual variation in drug responses. As an effort to understand the mechanism underlying the inter-individual variation of transporters activity, genetic and environmental factors influencing the expression or function of the transporters have extensively explored through last decade. Among them, genetic polymorphism of drug transporter encoding genes has generated much interest since the discovery of functional single nucleotide polymorphisms (SNP) of MDR1 gene. Besides drug transporters, xenobiotic receptors also modulate drug disposition by regulating the transcription of drug metabolizing enzymes and drug transporters. Among many xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two most well characterized since these receptors show wide substrate specificities and regulate the expression of various enzymes involved in drug disposition. Recently, several functional genetic polymorphisms were reported in PXR coding gene. In the present study, genetic polymorphisms of two drug transporters, MDR1 and BCRP, and two xenobiotic receptors, PXR and CAR, were investigated in Korean population.

  • PDF

Carbon Plume Modeling Assisted by Ar Plasmas (Ar 플라즈마 상태에서 운동하는 탄소 입자 모델링)

  • So, Soon-Youl;Lee, Jin;Chung, Hae-Deok;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2163-2165
    • /
    • 2005
  • A pulsed laser ablation deposition (PLAD) technique has been used for producing fine particle as well as thin film at relatively low substrate temperatures. However, in order to manufacture and evaluate such materials in detail, motions of plume particles generated by laser ablation have to be understood and interactions between the particles by ablation and gas plasma have to be clarified. Therefore, this paper was focused on the understanding of plume motion in laser ablation assisted by Ar plasma at 50(mTorr). Two-dimensional hybrid model consisting of fluid and particle models was developed and three kinds of plume particles which are carbon atom (C), ion $(C^+)$ and electron were considered in the calculation of particle method It was obtained that ablated $C^+$ was electrically captured in Ar plasmas by strong electric field (E). The difference between motions of the ablated electrons and $C^+$ made E strong and the collisional processes active.

  • PDF

Genetic Polymorphisms in Drug Transporters and Regulatory Xenobiotic Receptors in Korean Population

  • Lee, Sang-Seop;Shin, Jae-Gook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2004.05a
    • /
    • pp.27-29
    • /
    • 2004
  • Drug transporters play an essential role in the absorption, distribution and elimination of clinical drugs, nutrients and toxicants. The importance of the transporters is exampled by therapeutic failure in cancer chemotherapy that is mainly caused by the overexpression of multidrug resistance (MDR)-related transporters. In addition, the transporters may involve in drug-drug interactions that lead to serious adverse drug responses and some transporters also contribute to inter-individual variation in drug responses. As an effort to understand the mechanism underlying the inter-individual variation of transporters activity, genetic and environmental factors influencing the expression or function of the transporters have extensively explored through last decade. Among them, genetic polymorphism of drug transporter encoding genes has generated much interest since the discovery of functional single nucleotide polymorphisms (SNP) of MDRl gene. Besides drug transporters, xenobiotic receptors also modulate drug disposition by regulating the transcription of drug metabolizing enzymes and drug transporters. Among many xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two most well characterized since these receptors show wide substrate specificities and regulate the expression of various enzymes involved in drug disposition. Recently, several functional genetic polymorphisms were reported in PXR coding gene. In the present study, genetic polymorph isms of two drug transporters, MDR1 and BCRP, and two xenobiotic receptors, PXR and CAR, were investigated in Korean population.

  • PDF

Host Cellular Response during Enterohaemorrhagic Escherichia coli Shiga Toxin Exposure

  • Kyung-Soo, Lee;Seo Young, Park;Moo-Seung, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.441-456
    • /
    • 2022
  • Shiga toxins (Stxs) are major virulence factors from the enterohemorrhagic Escherichia coli (EHEC), a subset of Stx-producing Escherichia coli. Stxs are multi-functional, ribosome-inactivating proteins that underpin the development of hemolytic uremic syndrome (HUS) and central nervous system (CNS) damage. Currently, therapeutic options for the treatment of diseases caused by Stxs are limited and unsatisfactory. Furthermore, the pathophysiological mechanisms underpinning toxin-induced inflammation remain unclear. Numerous works have demonstrated that the various host ribotoxic stress-induced targets including p38 mitogen-activated protein kinase, its downstream substrate Mitogen-activated protein kinase-activated protein kinase 2, and apoptotic signaling via ER-stress sensors are activated in many different susceptible cell types following the regular retrograde transportation of the Stxs, eventually leading to disturbing intercellular communication. Therapeutic options targeting host cellular pathways induced by Stxs may represent a promising strategy for intervention in Stx-mediated acute renal dysfunction, retinal damage, and CNS damage. This review aims at fostering an in-depth understanding of EHEC Stxs-mediated pathogenesis through the toxin-host interactions.

Effect of the Level of Carbohydrates on Bio-hydrogenation and CLA Production by Rumen Bacteria When Incubated with Soybean Oil or Flaxseed Oil In vitro (Soybean Oil 및 Flaxseed Oil 첨가 배양시 탄수화물 첨가수준에 의한 반추미생물의 Bio-hydrogenation과 CLA 생성에 미치는 효과)

  • 최성호;임근우;김광림;송만강
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.521-532
    • /
    • 2006
  • An in vitro study was conducted to examine the effect of addition level of carbohydrates on fermentation characteristics, and bio-hydrogenation of unsaturated fatty acids by mixed rumen bacteria when incubated with soybean oil or flaxseed oil. Four levels(0%, 0.3%, 0.6% and 0.9%, w/v) of the mixed carbohydrates(glucose, cellobiose, soluble starch, 1:1:1, in weight basis) and oil sources(soybean or flaxseed oil, 60mg in 150ml culture solution) were added to the mixed solution of strained rumen fluid with artificial saliva(1:4, v/v), and incubated anaerobically for 12 hours at 39℃. pH and ammonia-N concentration were lower by increasing the substrate levels at all incubation periods(P<0.05~P<0.001). The propionate proportion increased(P<0.001), but acetic acid and butyric acid decreased(P<0.001) with the substrate level at 6 and 12 h incubations. Oil sources did not influence the proportions of individual VFA. At the end of incubation, the proportions of C18:0(P<0.01), C18:1(P<0.001) and trans-11C-18:1(P<0.01) were reduced but those of C18:2(P<0.001) and C18:3(P<0.01) were enhanced by the addition of flaxseed oil compared to addition of soybean oil. The proportions of C18:0 and total CLA were reduced(P<0.01) but those of trans-11-C18: (P<0.05) and C18:2(P<0.01) were increased with the substrate level when incubated with soybean oil or flaxseed oil. There were interactions(P<0.05) in the proportions of C18:1, C18:2 and C18:3(P<0.01) between oil source and substrate level. The proportions of cis-9, trans-11-CLA and trans-10, cis-12-CLA tended to reduce with substrate level, although there was no significant difference between treatments.

Mechanism of Biological Nitrogen Fixation in Azotobacter vinelandii (Azotobacter vinelandii에서의 생물학적 질소고정 작용 메카니즘)

  • Kim, Yong-Ung;Han, Jae-Hong
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.189-200
    • /
    • 2005
  • Biological nitrogen fixation is an important process for academic and industrial aspects. This review will briefly compare industrial and biological nitrogen fixation and cover the characteristics of biological nitrogen fixation studied in Azotobacter vinelandii. Various organisms can carry out biological nitrogen fixation and recently the researches on the reaction mechanism were concentrated on the free-living microorganism, A. vinelandii. Nitrogen fixation, which transforms atmospheric $N_2$ into ammonia, is chemically a reduction reaction requiring electron donation. Nitrogenase, the biological nitrgen fixer, accepts electrons from biological electron donors, and transfers them to the active site, FeMo-cofactor, through $Fe_4S_4$ cluster in Fe protein and P-cluster in MoFe protein. The electron transport and the proton transport are very important processes in the nitrogenase catalysis to understand its reaction mechanism, and the interactions between FeMo-cofactor and nitrogen molecule are at the center of biological nitrogen fixation mechanism. Spectroscopic studies including protein X-ray crystallography, EPR and $M{\ddot{o}}ssbauer$, biochemical approaches including substrate and inhibitor interactions as well as site-directed mutation study, and chemical approach to synthesize the FeMo-cofactor model compounds were used for biological nitrogen fixation study. Recent research results from these area were presented, and finally, a new nitrogenase reaction mechanism will be proposed based on the various research results.

Characteristics of Adhesive Disks in Parthenocissus tricuspidata during Attachment (착생에 따른 담쟁이덩굴 흡착근의 부착 특성)

  • Lee, Myung-Hui;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • Parthenocissus tricuspidata is an epiphyte that lacks a main axial stem, but develops adhesive disks along the stem for climbing support. In this study, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were utilized to examine the brick wall surface and the adhesive disks of P. tricuspidata that attached to the surface successfully. The study was mainly focused the outermost layers of both structures before and after adhesion to find out whether there has been some structural and/or physical interactions between the two. The adhesive disks adhered firmly to the brick wall by secreting adhesive materials that help them for a tight attachment to the surface. The rough wall surface appeared facilitating better attachment of the adhesive disks by infiltrating the materials into those spaces leading to some degree of interactions at the interface. EDS analysis on the outermost layers of the adhesive disks that were separated from the substrates was also consistent with the SEM data on the interaction between the adhesive disks and the substrate surface. EDS analysis of the brick wall surface and the adhesive disks demonstrated similar elements of O, Si, Fe, Al, K, Mg, and Na in their components.

A Research and Application of Polyhydroxyalkanoates in Biosensor Chip (생분해성 고분자, 폴리하이드록시알카노에이트를 이용한 바이오센서 칩 연구와 그 응용)

  • Park, T.J.;Lee, S.Y.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.371-377
    • /
    • 2007
  • Polyhydroxyalkanoates (PHAs) are a family of microbial polyesters that can be produced by fermentation from renewable resources. PHAs can be used as completely biodegradable plastics or elastomers. In this paper, novel applications of PHAs in biosensor are described. A general platform technology was developed by using the substrate binding domain (SBD) of PHA depolymerase as a fusion partner to immobilize proteins of interest on PHA surface. It could be shown that the proteins fused to the SBD of PHA depolymerase could be specifically immobilized onto PHA film, PHA microbead, and microcontact printed PHA surface. We review the results obtained for monitoring the specific interaction between the SBO and PHA by using enhanced green fluorescent protein, red fluorescent protein, single chain antibody against hepatitis B virus preS2 surface protein and severe acute respiratory syndrome coronavirus surface antigen as model proteins. Thus, this system can be efficiently used for studying protein-protein and possibly protein-biomolecule interactions for various biotechnological applications.