Browse > Article

Mechanism of Biological Nitrogen Fixation in Azotobacter vinelandii  

Kim, Yong-Ung (Metalloenzyme Research Group, BET Research Institute and Department of Biotechnology, Chung-Ang University)
Han, Jae-Hong (Metalloenzyme Research Group, BET Research Institute and Department of Biotechnology, Chung-Ang University)
Publication Information
Applied Biological Chemistry / v.48, no.3, 2005 , pp. 189-200 More about this Journal
Abstract
Biological nitrogen fixation is an important process for academic and industrial aspects. This review will briefly compare industrial and biological nitrogen fixation and cover the characteristics of biological nitrogen fixation studied in Azotobacter vinelandii. Various organisms can carry out biological nitrogen fixation and recently the researches on the reaction mechanism were concentrated on the free-living microorganism, A. vinelandii. Nitrogen fixation, which transforms atmospheric $N_2$ into ammonia, is chemically a reduction reaction requiring electron donation. Nitrogenase, the biological nitrgen fixer, accepts electrons from biological electron donors, and transfers them to the active site, FeMo-cofactor, through $Fe_4S_4$ cluster in Fe protein and P-cluster in MoFe protein. The electron transport and the proton transport are very important processes in the nitrogenase catalysis to understand its reaction mechanism, and the interactions between FeMo-cofactor and nitrogen molecule are at the center of biological nitrogen fixation mechanism. Spectroscopic studies including protein X-ray crystallography, EPR and $M{\ddot{o}}ssbauer$, biochemical approaches including substrate and inhibitor interactions as well as site-directed mutation study, and chemical approach to synthesize the FeMo-cofactor model compounds were used for biological nitrogen fixation study. Recent research results from these area were presented, and finally, a new nitrogenase reaction mechanism will be proposed based on the various research results.
Keywords
Nitrogen fixation; Nitrogenase; Azotobacter vinelandii; Mechanism; Fe protein; MoFe protein; FeMo-cofactor; Protein X-ray structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burris, R. H. (1991) Nitrogenases. J. Biol. Chem. 266, 9339- 9342
2 Rawlings, J., Shah, V. K., Chisnell, J. R., Brill, W. J., Zimmerman, R., Munck, E. and Orme-Johnson, W. H. (1978) Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. Spectroscopic evidence. J. Biol. Chem. 253, 1001- 1004
3 Smith, B. E., Durrant, M. C., Fairhurst, S. A., Gormal, C. A., Gronberg, K. L. C., Henderson, R. A., Ibrahim, S. K., Le Gall, T. and Pickett, C. J. (1999) Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev. 185-186, 669-687
4 Smil, V. (2000) In Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production (1st ed.) MIT Press, Cambridge, MA
5 Jennings, J. R. (1991) In Catalytic Ammonia Synthesis, Plenum press, New York
6 Boudart, M. (1980) Kinetics and mechanism of ammonia synthesis. Catal. Rev. 23, 1
7 Smith, B. E. (1999) Structure, function, and biosynthesis of the metallosulfur clusters in nitrogenases. Adv. Inorg. Chem. 47, 159   DOI
8 Dance, I. (1998) Understanding structure and reactivity of new fundamental inorganic molecules: metal sulfides, metallocarbohedrenes, and nitrogenase. Chem. Comm. 523-530
9 Tuczek, F. and Lehnert, N. (1998) New developments in nitrogen fixation. Angew. Chem. Int. Ed. 37, 2636-2638   DOI   ScienceOn
10 Dance, I. (1996) Theoretical investigations of the mechanism of biological nitrogen fixation at the FeMo cluster site. J. Biol. Inorg. Chem. 1, 581-586   DOI   ScienceOn
11 Richards, R. L. (1996) Reactions of small molecules at transition metal sites: studies relevant to nitrogenase, an organometallic enzyme. Coord. Chem. Rev. 154, 83-97   DOI   ScienceOn
12 Ludden, P. W. (1994) In Nitrogenases & the Iron-Molybdenum Cofactor. King, R. B. Ed. Encyclopedia of Inorganic Chemistry, John Wiley & Sons, vol. 5. pp. 2566-2580
13 Stiefel, E. I., Coucouvanis, D. and Newton, W. E. Ed. (1993). ACS Symposium Series, v. 535. Molybdenum Enzymes, Cofoactors, and Model Systems. D. C
14 Stacy, G., Burris, R. H. and Evans, H. J. (1992) Biological Nitrogen Fixation, Chapman & Hall
15 ATP hydrolysis is not required for the electron transfer from Fe protein to MoFe protein, rather ATP accelerates electron transfer
16 Burgmayer, S. J. N. and Stiefel, E. I. (1985) Molybdenum enzymes, cofactors, and systems: the chemical uniqueness of molybdenum. J. Chem. Ed. 62, 943   DOI
17 Eady, R. R. (1996) Structure-function relationships of alternative nitrogenases. Chem. Rev. 96, 3013-3030   DOI   PUBMED   ScienceOn
18 Chisnell, J. R., Remakumar, R. and Bishop, P. E. (1988) Purification of a second alternative nitrogenase from nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol. 170, 27- 33
19 Chan, J. M., Ryle, M. J. and Seefeldt, L. C.(1999) Evidnece that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. J. Biol. Chem. 274, 17593-17598   DOI
20 Burgess, B. K. and Lowe, D. J. (1996) Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983-3012   DOI   ScienceOn
21 Seefeldt, L. C. and Dean, D. R. (1997) Role of nucleotides in nitrogenase catalysis. Acc. Chem. Res. 30, 260-266   DOI   ScienceOn
22 Einsle, O., Tezcan, F. A., Andrade, S. L. A., Schmid, B., Yoshida, M., Howard, J. B. and Rees, D. C. (2002) Nitrogeanse MoFe-protein at $1.16{\AA}$ resolution: a central ligand in the FeMo-cofactor. Science 297, 1696-1700   DOI   PUBMED   ScienceOn
23 Watt, G. D. and Reddy, K. R. N. (1994) Formation of an all ferrous $Fe_{4}S_{4}$ cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J. Inorg. Biochem. 53, 281- 294   DOI   ScienceOn
24 McLean, P. A., Papaefthymiou, V., Orme-Johnson, W. H. and Münck, E. (1975) Isotopic hydrids of nitrogenase. Mössbauer study of MoFe protein with selective $^{57}Fe$ enrichment of the Pcluster. J. Biol. Chem. 262, 12900-12903
25 Angove, H. C., Yoo, S. J., Burgess, B. K. and Münck, E. (1997) Müssbauer and EPR evidence for an all-ferrous $Fe_{4}S_{4}$ cluster with S = 4 in the Fe protein of nitrogenase. J. Am. Chem. Soc. 119, 8730-8731   DOI   ScienceOn
26 Ribbe, M. W., Bursey, E. H. and Burgess, B. K. (2000) Identification of an Fe protein residue (Glu146) of Azotobacter vinelandii nitrogenase that is specifically involved in FeMo cofactor insertion. J. Biol. Chem. 275, 17631-17638   DOI   ScienceOn
27 Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. and Rees, D. C. (1997) Structure of $ADP{\cdot}AIF_{4}^-$-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370-376   DOI   PUBMED   ScienceOn
28 Peters, J. W., Stowell, M. H. B., Soltis, S. M., Finnegan, M. G., Johnson, M. K. and Rees, D. C. (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36, 1181-1187   DOI   ScienceOn
29 Dos Santos, P. C., Dean, D. R., Hu, Y. and Ribbe, M. W. (2004) Formation and insertion of the nitrogenase ironmolybdenum cofactor. Chem. Rev. 104, 1159-1173   DOI   ScienceOn
30 Rivera-Ortiz, J. M. and Burris, R. H. (1975) Interactions among substrate and inhibitors of nitrogenase. J. Bacteriol. 123, 537- 545
31 Christiansen, J., Seefeldt, L. D. and Dean, D. R. (2000) Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. J. Biol. Chem. 275, 36104-36107   DOI   ScienceOn
32 Nava, P., Han, J., Ahlrichs, R. and Coucouvanis, D. (2004) An evaluation by density functional theory of M-M interactions in organometallic clusters with the $[Fe_3MoS_3]^{2+}$ cores. Inorg. Chem. 43, 3225-3229.   DOI   ScienceOn
33 Maskos, Z. and Hales, B. J. (2003) Photo-lability of CO bound to Mo-nitrogenase from Aztobacter vinelandii. J. Inorg. Biochem. 93, 11-17   DOI   ScienceOn
34 Durrant, M. C. (2004) An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene. Biochemistry 43, 6030-6042   DOI   PUBMED   ScienceOn
35 Dos Santos, P. C., Igarashi, R. Y., Lee, H.-I., Hoffman, B. M., Seefeldt, L. C. and Dean, D. R. (2005) Substrate interactions with the nitrogenase active site. Acc. Chem. Res. 38, 208-214   DOI   ScienceOn
36 Han, J., Beck, K., Ockwig, N. and Coucouvanis, D. (1999) Synthetic analogs for the $MoFe_{3}S_{3}$ subunit of the nitrogenase cofactor: Structural features associated with the total number of valence electrons and the possible role of M-M and multiple M-S bonding in the function of Nitrogenase. J. Am. Chem. Soc. 121, 10448-10449   DOI   ScienceOn
37 The distances are very short, considering hydrogen atoms are bonded to the amino acid residues
38 Shah, V. K. and Brill, W. J. (1977) Isolation of an ironmolybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA 74, 3249-3253
39 Luque, F. and Pau, R. N. (1991) Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227, 481   DOI   ScienceOn
40 Howard, J. B. and Rees, D. C. (1994) Nitrogenase-a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63, 235-264   DOI   ScienceOn
41 Rao, P. V. and Holm, R. H. (2004) Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527-559   DOI   ScienceOn
42 Lee, S. C. and Holm, R. H. (2003) Speculative synthetic chemistry and the nitrogenase problem. Proc. Nat'l. Acad. Sci. USA 100, 3595-3600
43 Strop, P., Takahara, P. M., Chiu, H.-J., Angove, H. C., Burgess, B. K. and Rees, D. C. (2001) Crystal structure of the allferrous $[4Fe-4S]^0$ form of the Nitrogenase Iron protein from Azotobacter vinelandii. Biochemistry 40, 651-656.   DOI   ScienceOn
44 Spiro, T. G. (1985) In Molybdenum Enzymes. John Wiley & Sons, New York
45 Angove, H. C., Yoo, S. J., Munck, E. and Burgess, B. K. (1998) An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein. J. Biol. Chem. 273, 26330-26337   DOI   ScienceOn
46 Han, J. and Coucouvanis, D. (2005) Synthesis and structure of the Organometallic $MFe_{2}$$({\mu}_{3}-S)_2$ clusters (M = Mo or Fe) Dalton Trans. 1234-1240
47 Sellman, D., Utz, J., Blum, N. and Heinemann, F. W. (1999) On the function of nitrogenase FeMo cofactors and competitive catalysts: chemical priniciples, structural blue-prints, and the relevance of iron sulfur complexes for $N_{2}$ fixation. Coord. Chem. Rev. 190-192, 607-627
48 Pickett, C. J. (1996) The Chatt cycle and the mechanism of enzymic reduction of molecular nitrogen. J. Biol. Inorg. Chem. 1, 601-606   DOI   ScienceOn
49 Rees, D. C. and Howard, J. B. (1999) Structural bioenergetics and energy transduction mechanisms. J. Mol. Biol. 293, 343- 350   DOI   ScienceOn
50 Yoo, S. J., Angove, H. C., Burgess, B. K., Hendrich, M. P. and Münck, E. (1999) Mössbauer and interger-spin EPR studies and spin-coupling analysis of the $[4Fe-4S]^0$ cluster of the Fe protein from Azotobacter vinelandii nitrogenase. J. Am. Chem. Soc. 121, 2534-2545.   DOI   ScienceOn
51 Hawkes, T. R., McLean, P. A. and Smith, B. E. (1984) Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Biochem. J. 217, 317-321
52 Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566   DOI   ScienceOn
53 Mayer, S. M., Niehaus, W. G. and Dean, D. R. (2002) Reduction of short chain alkynes by a nitrogenase ${\alpha}$-$70^{Ala}$- substituted MoFe protein. J. Chem. Soc., Dalton Trans. 802- 807
54 Howard, J. B. and Rees, D. C. (1996) Structural basis of biological nitrogen fixation. Chem. Rev. 96, 2965-2982   DOI   ScienceOn
55 RCSB Protein Data Bank; http://www.rcsb.org/pdb/
56 Hardy, R. W. F., Burns, R. C., Stansny, J. T. and Parashall, G. W. (1975) In Nitrogen Fixation by Free-living Microorganisms, Stewart, W. D. P. ed. IBP. 6. pp. 351-376
57 Davis, L. C. and Wang, Y.-L. (1980) In vivo and in vitro kinetics of nitrogenase J. Bacteriol. 141, 1230-1238
58 Lee, H.-I., Igarashi, R. Y., Laryukhin, M., Doan, P. E., Dos Santos, P. C., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2004) An organometallic intermediate during alkyne reduction by nitrogenase. J. Am. Chem. Soc. 126, 9563-9569   DOI   ScienceOn
59 Fisher, K., Lowe, D. J. and Thorneley, R. N. F. (1991) Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein. Biochem. J. 279, 81-85
60 McLean, P. A., True, A., Nelson, M. J., Lee, H.-I., Hoffman, B. M. and Orme-Johnson, W. H. (2003) Effects of substrates (methyl isocyanide, $C_{2}H_{2}$) and inhibitor (CO) on resting-state wild-type and NifV-Klebsiella pneumoniae MoFe proteins. J. Inorg. Biochem. 93, 18-32   DOI   PUBMED   ScienceOn
61 Li, J.-Ge., Burgess, B. K. and Corbin, J. L. (1982) Nitrogenase reactivity: Cyanide as substrate and inhibitor. Biochemistry 21, 4393-4402   DOI   ScienceOn
62 Eady, R. R. and Leigh, G. J. (1994) Metals in the nitrogenases. J. Chem. Soc., Dalton Trans, 2739-2747
63 Bishop, P. E., Jarlenski, D. M. L. and Hetherington, D. R. (1980) Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 77, 7342- 7346   DOI   ScienceOn
64 Kim, J. and Rees, D. C. (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360, 553-560   DOI
65 Coucouvanis, D., Han, J., Ahlrichs, R., Nava, P. and Huniar, U. (2003) Density functional theory calculations on the nitrogenase cofactor and synthetic analogs. J. Inorg. Biochem. 96, 19-19
66 Benton, P. M. C., Christiansen, J., Dean, D. R. and Seefeldt, L. C. (2001) Stereospecificity of acetylene reduction catalyzed by nitrogenase. Am. Chem. Soc. 123, 1822-1827   DOI   ScienceOn
67 Dance, I. (2004) The mechanism of nitrogenase. Computed details of the site and geometry of binding of alkyne and alkene substrates and intermediates. J. Am. Chem. Soc. 126, 11852-11863   DOI   PUBMED   ScienceOn
68 Chan, J. M., Wu, W., Dean, D. R. and Seefeldt, L. C. (2000) Construction and characterization of a heterodimeric iron protein: defining roles for adenosine triphosphate in nitrogenase catalysis. Biochemistry 39, 7221-7228   DOI   ScienceOn
69 Nyborg, A. C., Johnson, J. L., Gunn, A. and Watt, G. D. (2000) Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis. J. Biol. Chem. 275, 39307- 39312   DOI   ScienceOn
70 Mayer, S. M., Gormal, C. A., Smith, B. E. and Lawson, D. M. (2002) Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of Iron Molybdenum cofactor (FeMoco). J. Biol. Chem. 277, 35263- 35266   DOI   ScienceOn
71 Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E. and Dean, D. R. (1990) Role for the nitrogenase MoFe protein $\alpha$- subunit in FeMo-cofactor binding and catalysis. Nature 343, 188-190   DOI   ScienceOn
72 Lee, S. C. and Holm, R. H. (2004) The clusters of nitrogenase: Synthetic methodology in the construction of weak-field clusters. Chem. Rev. 104, 1135-1157   DOI   ScienceOn
73 Ryle, M. J., Lee, H.-I., Seefeldt, L. C. and Hoffman, B. M. (2000) Nitrogenase reduction of carbon disulfide: freeze-quench EPR and ENDOR evidence for three sequential intermediates with cluster-bound carbon moieties. Biochemitry 39, 1114-1119
74 Etrl, G. (1980) Surface science and catalysis-studies on the mechanism of ammonia synthesis. Catal. Rev.-Sci. Eng. 21, 201
75 Pedrosa, F. O., Hungria, M., Yates, G. and Newton, W. E. (1999) Nitrogen Fixation: From molecules to Crop Productivity. In Current Plant Science and Biotechnology in Agriculture, vol. 38, Kluwer Academic Publ. London
76 Thorneley, R. N. F. and Lowe, D. J. (1996) Nitrogenase: substrate binding and activation. J. Biol. Inorg. Chem. 1, 576- 580   DOI   ScienceOn
77 Hadfield, K. L. and Bulen, W. A. (1969) Adenosine triphosphate requirement of nitrogenase from Azotobacter vinelandii. Biochemistry 8, 5103-5108   DOI   ScienceOn
78 Hinnemann, B. and Norskov, J. K. (2003) Modeling a central ligand in the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 125, 1466-1467   DOI   ScienceOn
79 It is reported recently that the atom inside FeMo-cofactor may not be nitrogen atom. Yang, T.-C., Maeser, N. K., Laryukhin, M., Lee, H.-I., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2005) The interstitial atom of the nitrogenase FeMocofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J. Am. Chem. Soc. ASAP ja0552489
80 Sharp, R. E. and Chapman, S. K. (1999) Mechanisms for regulating electron transfer in multi-centre redox proteins. Biochim. Biophys. Acta. 1432, 143-158
81 Rees, D. C., Chan, M. K. and Kim, J. (1993) Structure and function of nitrogenase. Adv. Inorg. Chem. 40, 89   DOI
82 Thorneley, R. N. F. and Lowe, D. J. (1985) In Molybdenum Enzymes; Spiro, T. G., Ed.; Wiley-Interscience: New York, p 221
83 Zhang, Y. and Holm, R. H. (2004) Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and PN- type clusters topologically related to the nitrogenase Pcluster. Inorg. Chem. 43, 674-682   DOI   ScienceOn
84 Ribbe, M., Gadkari, D. and Meyer, O. (1997) $N_{2}$ fixation by Streptomyces thermoautotrophicus involves a molybdenumdinitrogenase and a manganese-superoxide oxidoreductase that couple $N_{2}$ redcution to the oxidation of superoxide produced from $O_{2}$ by a molybdenum-CO dehydrogenase. J. Biol. Chem. 272, 26627-26632   DOI   ScienceOn
85 Grossmann, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., Eady, R. R., Schindelin, H., Kisker, C., Howard, J. B., Tsuruta, H., Muller, J. and Rees, D. C. (1999) Comparing crystallographic and solution structures of nitrogenase complexes. Acta Cryst. D55, 727-728
86 The terminology of 'apo-MoFe protein' was used historically to designate FeMo-cofactor void MoFe protein, which formed from nifE, nifN, nifB or nifH mutant. Strictly speaking, these proteins contain P-cluster and 'apo' is misnomer. Besides, apo- MoFe proteins isolated from nifE, nifN, or nif B mutant were reported different from that of nifH mutant
87 Christiansen, J., Cash, V. L., Seefeldt, L. D. and Dean, D. R. (2000) Isolation and characterization of an acetylene-resistant nitrogenase. J. Biol. Chem. 275, 11459-11464   DOI   ScienceOn
88 Durrant, M. C. (2001) Controlled protonation of ironmolybdenum cofactor by nitrogenases: a structural and theoretical analysis. Biochem. J. 355, 569-576
89 Han, J. and Newton, W. E. (2004) Differentiation of acetylenereduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed $C_{2}D_{2}$ reduction. Biochemistry 43, 2947-2956   DOI   ScienceOn
90 McLean, P. A. and Dixon, R. A. (1981) Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature 292, 655-657   DOI   ScienceOn
91 Coucouvanis, D., Han, J. and Moon, N. (2002) Synthesis and characterization of sulfur-voided cubanes. Structural analogs for the $MoFe_{3}S_{3}$ subunit in the nitrogenase cofactor. J. Am. Chem. Soc. 124, 216-224   DOI   ScienceOn
92 Coucouvanis, D. (1996) Functional analogs for the reduction of certain nitrogenase substrates. Are multiple sites within the Fe/ Mo/S active center involved in the 6e- reduction of $N_{2}$? J. Biol. Inorg. Chem. 1, 594-600   DOI   ScienceOn
93 Clarke, T. A., Maritano, S. and Eady, R. R. (2000) Formation of a tight 1 : 1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for longrange interactions between the Fe protein binding sites during catalytic hydrogen evolution. Biochemistry 39, 11434-11440   DOI   ScienceOn
94 Sellman, D., Fursattel, A. and Sutter, J. (2000) The nitrogenase catalyzed $N_2$ dependent HD formation: a model reaction and its significance for the FeMoco function. Coord. Chem. Rev. 200, 545-561   DOI   ScienceOn
95 Ruttimann-Johnson, C., Staples, C. R., Rangaraj, P., Shah, V. K. and Ludden, P. W. (1999) A vanadium and iron cluster accumulates on VnfX during Iron-Vanadium-cofacter synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J. Biol. Chem. 274, 18087-18092   DOI
96 Schneider, K., Gollan, U., Dröttboom, M., Selsemeier-Voigt, S. and Muller, A. (1997) Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodoacter Capsulatus. Eur. J. Biochem. 244, 789-800   DOI   ScienceOn
97 Nyborg, A. C., Erickson, J. A., Johnson, J. L., Gunn, A., Truscott, S. M. and Watt, G. D. (2000) Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant. J. Inorg. Biochem. 78, 371-381   DOI   ScienceOn
98 Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C. and Dean, D. R. (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37, 12611- 12623   DOI   ScienceOn
99 Henderson, R. A., Leigh, G. J. and Pickett, C. J. (1983) The chemistry of nitrogen fixation and models for the reactions of nitrogenase. Adv. Inorg. Chem. Radiochem. 27, 197   DOI
100 Liang, J., Madden, M., Shah, V. K. and Burris, R. H. (1990) Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae. Biochemistry 29, 8577-8581   DOI   ScienceOn
101 Hausinger, R. P. and Howard, J. B. (1983) Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 258, 13486-13492
102 Erickson, J. A., Nyborg, A. C., Johnson, J. L., Truscott, S. M., Gunn, A., Nordmeyer, F. R. and Watt, G. D. (1999) Enhanced Efficiency of ATP Hydrolysis during Nitrogenase Catalysis Utilizing Reductants That Form the All-Ferrous Redox State of the Fe Protein. Biochemistry 38, 14279-14285   DOI   ScienceOn
103 Coucouvanis, D. (1991) Use of preassembled iron/sulfur and iron/molybdenum/sulfur clusters in the stepwise synthesis of potential analogs for the Fe/Mo/S site in nitrogenase. Acc. Chem. Res. 24, 1-8   DOI
104 Muller, A. and Newton, W. E. (1983) In Nitrogen fixation. Plenum press, New York
105 Although 1Mo4+, 1Fe3+, 6Fe3+ model was suggested by ENDOR spectroscopic study, Yoo, et al's result is recently more supported.
106 Kisker, C., Schindelin, H. and Rees, D. C. (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Ann. Rev. Biochem. 66, 233-267   DOI   ScienceOn
107 Bazhenova, T. A. and Shilov, A. E. (1995) Nitrogen fixation in solution. Coord. Chem. Rev. 144, 69-145   DOI   ScienceOn
108 Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80, 133-136   DOI   PUBMED   ScienceOn
109 Rees, D. C. and Howard J. B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol. 4, 559-566   DOI   ScienceOn
110 The activity of nitrogenase is generally represented by how much electrons are transferred to substrates because all electrons transferred to MoFe protein are used for substrate reduction
111 The abbreviations for MoFe protein (dinitrogenase) and Fe protein (dinitrogenase reductase) are 1 and 2, respectively. For example, MoFe protein of A. vinelandii is presented as Av1
112 Simpson, F. B. and Burris, R. H. (1984) A nitroegen pressure of 50 atmosphreres does not prevent evolution of hydrogen by nitrogenase. Science 224, 1095-1097   DOI   PUBMED
113 Lee, H.-I., Benton, P. M. C., Laryukhin, M., Igarashi, R. Y., Dean, D. R., Seefeldt, L. C. and Hoffman, B. M. (2003) The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. J. Am. Chem. Soc. 125, 5604-5605   DOI   ScienceOn
114 Eady, R. R. (1991) The Mo-, V-, Fe-based nitrogenase systems of Azotobacter, Adv. Inorg. Chem. 36, 77-102   DOI
115 The amino acid sequence of nitrogenase follows A. vinelandii
116 Yoo, S. J., Angove, H. C., Papaethymiou, V., Burgess, B. K. and Munck, E. (2000) Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective Fe- 57 enrichment of the M-centers. J. Am. Chem. Soc. 122, 4926-4936   DOI   ScienceOn