DOI QR코드

DOI QR Code

Single-walled carbon nanotubes directly-grown from orientated carbon nanorings

  • Tojo, Tomohiro (Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology) ;
  • Inada, Ryoji (Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology) ;
  • Sakurai, Yoji (Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology) ;
  • Kim, Yoong Ahm (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
  • Received : 2017.11.28
  • Accepted : 2018.01.17
  • Published : 2018.07.31

Abstract

Surfactant-wrapped separation methods of metallic and semiconducting single-walled carbon nanotubes (SWCNTs) can result in large changes in intrinsic physical and chemical properties due to electronic interactions between a nanotube and a surfactant. Our approach to synthesize SWCNTs with an electronic feature relied on utilizing carbon nanorings, [n] cycloparaphenylenes ([n]CPPs), which are the fundamental unit of armchair type SWCNTs (a-SWCNTs) that possess a metallic feature without any surfactants. To obtain long tubular structures from [n]CPPs, the host-guest complexes formed with well-aligned [n]CPP hosts and various fullerene guests on a silicon substrate were pyrolyzed under an ethanol gas flow at a high temperature with focused-ultraviolet laser irradiation. The pyrolyzed [n]CPPs were observed to transform from nanorings to tubular structures with 1.5-1.7 nm diameters corresponding to the employed diameter of [n]CPPs. Our approach suggests that [n]CPPs are useful for structure-controlled synthesis of SWCNTs.

Keywords

References

  1. Hwang I, Jung HJ, Cho SH, Jo SS, Choi YS, Sung JH, Choi JH, Jo MH, Park C. Efficient room-temperature near-infrared detection with solution-processed networked single wall carbon nanotube field effect transistors. Small, 10, 653 (2014). https://doi.org/10.1002/smll.201301582.
  2. Yoon J, Shin G, Kim J, Moon YS, Lee SJ, Zi G, Ha JS. Fabrication of stretchable single-walled carbon nanotube logic devices. Small, 10, 2910 (2014). https://doi.org/10.1002/smll.201303779.
  3. Meyyappan M. Carbon nanotube-based chemical sensors. Small, 12, 2118 (2016). https://doi.org/10.1002/smll.201502555.
  4. Zhu Z. An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett, 9, 25 (2017). https://doi.org/10.1007/s40820-017-0128-6.
  5. Martinez-Sarti L, Pertegas A, Monrabal-Capilla M, Gilshteyn E, Varjos I, Kauppinen EI, Nasibulin AG, Sessolo M, Bolink HJ. Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes. Org Electron, 30, 36 (2016). https://doi.org/10.1016/j.orgel.2015.12.011.
  6. Kanninen P, Luong ND, Sinh LH, Anoshkin IV, Tsapenko A, Seppala J, Nasibulin AG, Kallio T. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology, 27, 235403 (2016). https://doi.org/10.1088/0957-4484/27/23/235403.
  7. Yang MH, Choi BG. Preparation of gold nanoparticle/single-walled carbon nanotube nanohybrids using biologically programmed peptide for application of flexible transparent conducting films. Carbon Lett, 20, 26 (2016). https://doi.org/10.5714/cl.2016.20.026.
  8. Nicola FD, Salvato M, Cirillo C, Crivellari M, Boscardin M, Passacantando M, Nardone M, Matteis FD, Motta N, Crescenzi MD, Castrucci P. 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells. Carbon, 114, 402 (2017). https://doi.org/10.1016/j.carbon.2016.12.050.
  9. Bhatia R, Ujjain SK. Soluble single-walled carbon nanotubes for photovoltaics. Mater Lett, 190, 165 (2017). https://doi.org/10.1016/j.matlet.2017.01.008.
  10. Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science, 314, 974 (2006). https://doi.org/10.1126/science.1133781.
  11. Sanchez-Valencia JR, Dienel T, Gröning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R. Controlled synthesis of single-chirality carbon nanotubes. Nature, 512, 61 (2014). https://doi.org/10.1038/nature13607.
  12. Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 510, 522 (2014). https://doi.org/10.1038/nature13434.
  13. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol, 1, 60 (2006). https://doi.org/10.1038/nnano.2006.52.
  14. Green AA, Hersam MC. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv Mater, 23, 2185 (2011). https://doi.org/10.1002/adma.201100034.
  15. Tu X, Manohar S, Jagota A, Zheng M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature, 460, 250 (2009). https://doi.org/10.1038/nature08116.
  16. Tu X, Walker ARH, Khripin CY, Zheng M. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J Am Chem Soc, 133, 12998 (2011). https://doi.org/10.1021/ja205407q.
  17. Liu H, Nishide D, Tanaka T, Kataura H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2, 309 (2011). https://doi.org/10.1038/ncomms1313.
  18. Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H. Industrial-scale separation of high-purity single-chirality singlewall carbon nanotubes for biological imaging. Nat Commun, 7, 12056 (2016). https://doi.org/10.1038/ncomms12056.
  19. Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat Chem, 5, 572 (2013). https://doi.org/10.1038/nchem.1655.
  20. Okada K, Yagi A, Segawa Y, Itami K. Synthesis and properties of [8]-, [10]-, [12]-, and [16]cyclo-1,4-naphthylenes. Chem Sci, 8, 661 (2017). https://doi.org/10.1039/C6SC04048A.
  21. Hermann J, Alfe D, Tkatchenko A. Nanoscale ${\pi}-{\pi}$ stacked molecules are bound by collective charge fluctuations. Nat Commun, 8, 14052 (2017). https://doi.org/10.1038/ncomms14052.
  22. Yuan K, Dang JS, Guo YJ, Zhao X. Theoretical prediction of the host-guest interactions between novel photoresponsive nanorings and $C_{60}$: a strategy for facile encapsulation and release of fullerene. J Comput Chem, 36, 518 (2015). https://doi.org/10.1002/jcc.23824.
  23. Rio J, Erbahar D, Rayson M, Briddon P, Ewels CP. Cyclotetrahalop-phenylenes: simulations of halogen substituted cycloparaphenylenes and their interaction with $C_{60}$. Phys Chem Chem Phys, 18, 23257 (2016). https://doi.org/10.1039/C6CP03376H.
  24. Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Size-selective encapsulation of $C_{60}$ by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew Chem Int Ed, 50, 8342 (2011). https://doi.org/10.1002/anie.201102302.
  25. Iwamoto T, Watanabe Y, Takaya H, Haino T, Yasuda N, Yamago S. Size- and orientation-selective encapsulation of $C_{70}$ by cycloparaphenylenes. Chem Eur J, 19, 14061 (2013). https://doi.org/10.1002/chem.201302694.
  26. Rao CNR, Satishkumar BC, Govindaraj A, Nath M. Nanotubes. ChemPhysChem, 2, 78 (2001). https://doi.org/10.1002/1439-7641(20010216)2:2<78::AID-CPHC78>3.0.CO;2-7.
  27. Kim YA, Yang KS, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Lett, 15, 77 (2014). https://doi.org/10.5714/CL.2014.15.2.077.
  28. Segawa Y, Miyamoto S, Omachi H, Matsuura S, Senel P, Sasamori T, Tokitoh N, Itami K. Concise synthesis and crystal structure of [12]cycloparaphenylene. Angew Chem Int Ed, 50, 3244 (2011). https://doi.org/10.1002/anie.201007232.
  29. Bandow S, Takizawa M, Kato H, Okazaki T, Shinohara H, Iijima S. Smallest limit of tube diameters for encasing of particular fullerenes determined by radial breathing mode Raman scattering. Chem Phys Lett, 347, 23 (2001). https://doi.org/10.1016/S0009-2614(01)01020-X.
  30. Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993.
  31. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865.
  32. CPMD ver 3.11.1, IBM Co., 2000-2017. Available from: http://www.cpmd.org.
  33. Hyerchem Release ver. 7.03 for Windows, Hypercube Inc., 2002. Available from: http://www.hyper.com.
  34. van Duin ACT, Dasgupta S, Lorant F, Goddard III WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A, 105, 9396 (2001). https://doi.org/10.1021/jp004368u.
  35. Yoon K, Rahnamoun A, Swett JL, Iberi V, Cullen DA, Vlassiouk IV, Belianinov A, Jesse S, Sang X, Ovchinnikova OS, Rondinone AJ, Unocic RR, van Duin ACT. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation. ACS Nano, 10, 8376 (2016). https://doi.org/10.1021/acsnano.6b03036.
  36. Furman D, Dubnikova F, van Duin ACT, Zeiri Y, Kosloff R. Reactive force field for liquid hydrazoic acid with applications to detonation chemistry. J Phys Chem C, 120, 4744 (2016). https://doi.org/10.1021/acs.jpcc.5b10812.
  37. Wen J, Ma T, Zhang W, Psofogiannakis G, van Duin ACT, Chen L, Qian L, Hu Y, Lu X. Atomic insight into tribochemical wear mechanism of silicon at the $Si/SiO_2$ interface in aqueous environment: molecular dynamics simulations using ReaxFF reactive force field. Appl Surf Sci, 390, 216 (2016). https://doi.org/10.1016/j.apsusc.2016.08.082.
  38. Yeon J, van Duin ACT, Kim SH. Effects of water on tribochemical wear of silicon oxide interface: molecular dynamics (MD) study with reactive force field (ReaxFF). Langmuir, 32, 1018 (2016). https://doi.org/10.1021/acs.langmuir.5b04062.
  39. Miyazawa K, Hamamoto K, Nagata S, Suga T. Structural investigation of the $C_{60}/C_{70}$ whiskers fabricated by forming liquid-liquid interfaces of toluene with dissolved $C_{60}/C_{70}$ and isopropyl alcohol. J Mater Res, 18, 1096 (2003). https://doi.org/10.1557/JMR.2003.0151.
  40. Minato J, Miyazawa K. Solvated structure of $C_{60}$ nanowhiskers. Carbon, 43, 2837 (2005). https://doi.org/10.1016/j.carbon.2005.06.013.
  41. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS. Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science, 275, 187 (1997). https://doi.org/10.1126/science.275.5297.187.
  42. Pimenta MA, Marucci A, Brown SDM, Matthews MJ, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS. Resonant Raman effect in single-wall carbon nanotubes. J Mater Res, 13, 2396 (1998).
  43. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Rep, 409, 47 (2005). https://doi.org/10.1016/j.physrep.2004.10.006.