• Title/Summary/Keyword: subcellular fractionation

Search Result 23, Processing Time 0.031 seconds

KIF26B-AS1 Regulates TLR4 and Activates the TLR4 Signaling Pathway to Promote Malignant Progression of Laryngeal Cancer

  • Li, Li;Han, Jiahui;Zhang, Shujia;Dong, Chunguang;Xiao, Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1344-1354
    • /
    • 2022
  • Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.

Nuclear Rac1 regulates the bFGF-induced neurite outgrowth in PC12 cells

  • Kim, Eung-Gook;Shin, Eun-Young
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.617-622
    • /
    • 2013
  • Rac1 plays a key role in neurite outgrowth via reorganization of the actin cytoskeleton. The molecular mechanisms underlying Rac1-mediated actin dynamics in the cytosol and plasma membrane have been intensively studied, but the nuclear function of Rac1 in neurite outgrowth has not yet been addressed. Using subcellular fractionation and immunocytochemistry, we sought to explore the role of nuclear Rac1 in neurite outgrowth. bFGF, a strong agonist for neurite outgrowth in PC12 cells, stimulated the nuclear accumulation of an active form of Rac1. Rac1-PBR (Q) mutant, in which six basic residues in the polybasic region at the C-terminus were replaced by glutamine, didn't accumulate in the nucleus. In comparison with control cells, cells expressing this mutant form of Rac1 displayed a marked defect in extending neurites that was concomitant with reduced expression of MAP2 and MEK-1. These results suggest that Rac1 translocation to the nucleus functionally correlates with bFGF-induced neurite outgrowth.

Nuclear UPF1 Is Associated with Chromatin for Transcription-Coupled RNA Surveillance

  • Hong, Dawon;Park, Taeyoung;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.523-529
    • /
    • 2019
  • mRNA quality is controlled by multiple RNA surveillance machineries to reduce errors during gene expression processes in eukaryotic cells. Nonsense-mediated mRNA decay (NMD) is a well-characterized mechanism that degrades error-containing transcripts during translation. The ATP-dependent RNA helicase up-frameshift 1 (UPF1) is a key player in NMD that is mostly prevalent in the cytoplasm. However, recent studies on UPF1-RNA interaction suggest more comprehensive roles of UPF1 on diverse forms of target transcripts. Here we used subcellular fractionation and immunofluorescence to understand such complex functions of UPF1. We demonstrated that UPF1 can be localized to the nucleus and predominantly associated with the chromatin. Moreover, we showed that UPF1 associates more strongly with the chromatin when the transcription elongation and translation inhibitors were used. These findings suggest a novel role of UPF1 in transcription elongation-coupled RNA machinery in the chromatin, as well as in translation-coupled NMD in the cytoplasm. Thus, we propose that cytoplasmic UPF1-centric RNA surveillance mechanism could be extended further up to the chromatin-associated UPF1 and co-transcriptional RNA surveillance. Our findings could provide the mechanistic insights on extensive regulatory roles of UPF1 for many cellular RNAs.

SoEM: a novel PCR-free biodiversity assessment method based on small-organelles enriched metagenomics

  • Jo, Jihoon;Lee, Hyun-Gwan;Kim, Kwang Young;Park, Chungoo
    • ALGAE
    • /
    • v.34 no.1
    • /
    • pp.57-70
    • /
    • 2019
  • DNA metabarcoding is currently used for large-scale taxonomic identification to understand the community composition in various marine ecosystems. However, before being widely used in this emerging field, this experimental and analytic approach still has several technical challenges to overcome, such as polymerase chain reaction (PCR) bias, and lack of well-established metabarcoding markers, a task which is difficult but not impossible to achieve. In this study, we present an adapted PCR-free small-organelles enriched metagenomics (SoEM) method for marine biodiversity assessment. To avoid PCR bias and random artefacts, we extracted target DNA sequences without PCR amplification from marine environmental samples enriched with small organelles including mitochondria and plastids because their genome sequences provide a valuable source of molecular markers for phylogenetic analysis. To experimentally enrich small organelles, we performed subcellular fractionation using modified differential centrifugation for marine environmental DNA samples. To validate our SoEM method, two marine environmental samples from the coastal waters were tested the taxonomic capturing capacity against that of traditional DNA metabarcoding method. Results showed that, regardless of taxonomic levels, at least 3-fold greater numbers of taxa were identified in our SoEM method, compared to those identified by the conventional multi-locus DNA metabarcoding method. The SoEM method is thus effective and accurate for identifying taxonomic diversity and presents a useful alternative approach for evaluating biodiversity in the marine environment.

Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells

  • Yu, Jae Sik;Roh, Hyun-Soo;Baek, Kwan-Hyuck;Lee, Seul;Kim, Sil;So, Hae Min;Moon, Eunjung;Pang, Changhyun;Jang, Tae Su;Kim, Ki Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.562-570
    • /
    • 2018
  • Background: Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. Methods: Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. Results and conclusion: Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with $IC_{50}$ values ranging from $161.1{\mu}M$ to $264.6{\mu}M$. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.

Cloning and Functional Characterization of Ptpcd2 as a Novel Cell Cycle Related Protein Tyrosine Phosphatase that Regulates Mitotic Exit

  • Zineldeen, Doaa H.;Wagih, Ayman A.;Nakanishi, Makoto
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3669-3676
    • /
    • 2013
  • Faithful transmission of genetic information depends on accurate chromosome segregation as cells exit from mitosis, and errors in chromosomal segregation are catastrophic and may lead to aneuploidy which is the hallmark of cancer. In eukaryotes, an elaborate molecular control system ensures proper orchestration of events at mitotic exit. Phosphorylation of specific tyrosyl residues is a major control mechanism for cellular proliferation and the activities of protein tyrosine kinases and phosphatases must be integrated. Although mitotic kinases are well characterized, phosphatases involved in mitosis remain largely elusive. Here we identify a novel variant of mouse protein tyrosine phosphatase containing domain 1 (Ptpcd1), that we named Ptpcd2. Ptpcd1 is a Cdc14 related centrosomal phosphatase. Our newly identified Ptpcd2 shared a significant homology to yeast Cdc14p (34.1%) and other Cdc14 family of phosphatases. By subcellular fractionation Ptpcd2 was found to be enriched in the cytoplasm and nuclear pellets with catalytic phosphatase activity. By means of immunofluorescence, Ptpcd2 was spatiotemporally regulated in a cell cycle dependent manner with cytoplasmic abundance during mitosis, followed by nuclear localization during interphase. Overexpression of Ptpcd2 induced mitotic exit with decreased levels of some mitotic markers. Moreover, Ptpcd2 failed to colocalize with the centrosomal marker ${\gamma}$-tubulin, suggesting it as a non-centrosomal protein. Taken together, Ptpcd2 phosphatase appears a non-centrosomal variant of Ptpcd1 with probable mitotic functions. The identification of this new phosphatase suggests the existence of an interacting phosphatase network that controls mammalian mitosis and provides new drug targets for anticancer modalities.

Immunological Characterization and Localization of the Alcohol-dehydrogenase in Streptococcus pneumoniae (폐렴구균 알코올탈수소효소의 세포 특이성 및 세포내 분포)

  • 권혁영;박연진;표석능;이동권
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • Heat shock proteins serve as chaperone by preventing the aggregation of denatured proteins and promote survival of pathogens in harsh environments. In bacteria, ethanol shock induced the major chaperone GroEL and DnaK, but in Streptococcus pneumoniae, it induced neither GroEL nor DnaK but alcohol dehydrogenase (ADH). In this study, ADH gene encoding a 104-kDa (p104) protein was identified and characterized. The deduced amino acid sequence of pneumococcal ADH shows homology with other members of the ADH family, and particularly with Entamoeba histolytica ADH2 and E. coli ADH. S. pneumoniae adh is composed of 883 amino acids and its estimated isoelectric point is 6.09. Although ADH is conserved between S. pneumoniae and E. coli, immunoblot analysis employing antisera raised against pneumococcus ADH demonstrated no cross-reactivity with ADH analog in Eschericha coli, Staphylococcus aureus and human HeLa cells. Also secretion of ADH was demonstrated by subcellular fractionation and immunoblot analysis of proteins. These results suggest that S. pneumoniae ADH could be a highly feasible candidate for both diagnostic marker and vaccine.

  • PDF

Functional Characterization and Proteomic Analysis of Porcine Deltacoronavirus Accessory Protein NS7

  • Choi, Subin;Lee, Changhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1817-1829
    • /
    • 2019
  • Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in neonatal piglets. Like other coronaviruses, PDCoV encodes at least three accessory or species-specific proteins; however, the biological roles of these proteins in PDCoV replication remain undetermined. As a first step toward understanding the biology of the PDCoV accessory proteins, we established a stable porcine cell line constitutively expressing the PDCoV NS7 protein in order to investigate the functional characteristics of NS7 for viral replication. Confocal microscopy and subcellular fractionation revealed that the NS7 protein was extensively distributed in the mitochondria. Proteomic analysis was then conducted to assess the expression dynamics of the host proteins in the PDCoV NS7-expressing cells. High-resolution two-dimensional gel electrophoresis initially identified 48 protein spots which were differentially expressed in the presence of NS7. Seven of these spots, including two up-regulated and five down-regulated protein spots, showed statistically significant alterations, and were selected for subsequent protein identification. The affected cellular proteins identified in this study were classified into functional groups involved in various cellular processes such as cytoskeleton networks and cell communication, metabolism, and protein biosynthesis. A substantial down-regulation of α-actinin-4 was confirmed in NS7-expressing and PDCoV-infected cells. These proteomic data will provide insights into the understanding of specific cellular responses to the accessory protein during PDCoV infection.

Expression of Human Papillomavirus Type 16, Prototype and Natural Variant E7 Proteins using Baculovirus Expression System

  • Han, Hee-Sung;Kee, Sun-Ho;Hwang, Soon-Bong;Kim, Hyung-Jun;Cho, Kyung-A;Kim, Yoon-Won;Cho, Min-Kee;Chang, Woo-Hyun
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.1
    • /
    • pp.53-62
    • /
    • 1998
  • Human papillomavirus (HPV) 16, E7 proteins derived from the prototype (Bac73) and natural variant (Bac101) E7 open reading frame were produced in Sf9 insect cells. The variant E7 gene occurred naturally by substitution mutation at the position of 88 nucleotide, resulting serine instead of asparagine. Using E7 specific monoclonal antibody (VD6), both E7 proteins were identified in recombinant baculovirus infected SF9 cells. Radiolabelling and immunoprecipitation analysis revealed that both E7 proteins were phosphoproteins. Immunostaining result showed that E7 proteins were mainly localized in the cytoplasm. Nuclear form of E7 proteins was also detected after a sequential fractionation procedure for removing chromatin structure. Considering that the VD6 recognition site in E7 protein is located within 10 amino acid at the N-terminus, this region appears to be blocked by the nuclear component. Western blot analysis revealed that nuclear form was more abundant than cytoplasmic E7 proteins. Time course immunostaining showed that the primary location of E7 protein was the nucleus and exported to the cytoplasm as proteins were accumulated. These events occurred similarly in both Bac73 and Bac101 infected Sf9 cells, suggesting that these two proteins may have similar biological functions.

  • PDF

Protein Disulfide Isomerase Is Cleaved by Caspase-3 and -7 during Apoptosis

  • Na, Kyung Sook;Park, Byoung Chul;Jang, Mi;Cho, Sayeon;Lee, Do Hee;Kang, Sunghyun;Lee, Chong-Kil;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.261-267
    • /
    • 2007
  • Apoptotic signals are typically accompanied by activation of aspartate-specific cysteine proteases called caspases, and caspase-3 and -7 play crucial roles in the execution of apoptosis. Previously, using the proteomic approach, protein disulfide isomerase (PDI) was found to be a candidate substrate of caspase-7. This abundant 55 kDa protein introduces disulfide bonds into proteins (via its oxidase activity) and catalyzes the rearrangement of incorrect disulfide bonds (via its isomerase activity). PDI is abundant in the ER but is also found in non-ER locations. In this study we demonstrated that PDI is cleaved by caspase-3 and -7 in vitro. In addition, in vivo experiment showed that it is cleaved during etoposide-induced apoptosis in HL-60 cells. Subcellular fractionation showed that PDI was also present in the cytosol. Furthermore, only cytosolic PDI was clearly digested by caspase-3 and -7. It was also confirmed by confocal image analysis that PDI and caspase-7 partially co-localize in both resting and apoptotic MCF-7 cells. Overexpression of cytosolic PDI (ER retention sequence deleted) inhibited cell death after an apoptotic stimulus. These data indicate that cytosolic PDI is a substrate of caspase-3 and -7, and that it has an anti-apoptotic action.