Browse > Article
http://dx.doi.org/10.4490/algae.2019.34.2.26

SoEM: a novel PCR-free biodiversity assessment method based on small-organelles enriched metagenomics  

Jo, Jihoon (School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University)
Lee, Hyun-Gwan (Marine Ecosystem Disturbing and Harmful Organisms (MEDHO) Research Center)
Kim, Kwang Young (Marine Ecosystem Disturbing and Harmful Organisms (MEDHO) Research Center)
Park, Chungoo (School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University)
Publication Information
ALGAE / v.34, no.1, 2019 , pp. 57-70 More about this Journal
Abstract
DNA metabarcoding is currently used for large-scale taxonomic identification to understand the community composition in various marine ecosystems. However, before being widely used in this emerging field, this experimental and analytic approach still has several technical challenges to overcome, such as polymerase chain reaction (PCR) bias, and lack of well-established metabarcoding markers, a task which is difficult but not impossible to achieve. In this study, we present an adapted PCR-free small-organelles enriched metagenomics (SoEM) method for marine biodiversity assessment. To avoid PCR bias and random artefacts, we extracted target DNA sequences without PCR amplification from marine environmental samples enriched with small organelles including mitochondria and plastids because their genome sequences provide a valuable source of molecular markers for phylogenetic analysis. To experimentally enrich small organelles, we performed subcellular fractionation using modified differential centrifugation for marine environmental DNA samples. To validate our SoEM method, two marine environmental samples from the coastal waters were tested the taxonomic capturing capacity against that of traditional DNA metabarcoding method. Results showed that, regardless of taxonomic levels, at least 3-fold greater numbers of taxa were identified in our SoEM method, compared to those identified by the conventional multi-locus DNA metabarcoding method. The SoEM method is thus effective and accurate for identifying taxonomic diversity and presents a useful alternative approach for evaluating biodiversity in the marine environment.
Keywords
biodiversity; DNA metabarcoding; environmental DNA; metagenomics; small-organelles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. & Glockner, F. O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue):D590-D596.
2 Roy, K. & Foote, M. 1997. Morphological approaches to measuring biodiversity. Trends Ecol. Evol. 12:277-281.
3 Saunders, G. W. & McDevit, D. C. 2012. Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. Methods Mol. Biol. 858:207-222.   DOI
4 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. & Weber, C. F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541.   DOI
5 Schuster, S. C. 2007. Next-generation sequencing transforms today's biology. Nat. Methods 5:16-18.   DOI
6 Scotland, R. W., Olmstead, R. G. & Bennett, J. R. 2003. Phylogeny reconstruction: the role of morphology. Syst. Biol. 52:539-548.   DOI
7 Straub, S. C., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C. & Liston, A. 2012. Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am. J. Bot. 99:349-364.   DOI
8 Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21:2045-2050.   DOI
9 Tang, M., Tan, M., Meng, G., Yang, S., Su, X., Liu, S., Song, W., Li, Y., Wu, Q., Zhang, A. & Zhou, X. 2014. Multiplex sequencing of pooled mitochondrial genomes: a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 42:e166.   DOI
10 Walker, B. H. 1992. Biodiversity and ecological redundancy. Conserv. Biol. 6:18-23.   DOI
11 Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614-620.   DOI
12 Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P. & Kauserud, H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10:189.   DOI
13 Zhou, J., Bruns, M. A. & Tiedje, J. M. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62:316-322.   DOI
14 Zhou, X., Adamowicz, S. J., Jacobus, L. M., Dewalt, R. E. & Hebert, P. D. N. 2009. Towards a comprehensive barcode library for arctic life: Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Front. Zool. 6:30.   DOI
15 Zhou, X., Li, Y., Liu, S., Yang, Q., Su, X., Zhou, L., Tang, M., Fu, R., Li, J. & Huang, Q. 2013. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. Gigascience 2:4.   DOI
16 Andujar, C., Arribas, P., Ruzicka, F., Crampton-Platt, A., Timmermans, M. J. T. N. & Vogler, A. P. 2015. Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. Mol. Ecol. 24:3603-3617.   DOI
17 Andujar, C., Arribas, P., Yu, D. W., Vogler, A. P. & Emerson, B. C. 2018. Why the COI barcode should be the community DNA metabarcode for the metazoa. Mol. Ecol. 27:3968-3975.   DOI
18 Ansorge, W. J. 2009. Next-generation DNA sequencing techniques. N. Biotechnol. 25:195-203.   DOI
19 Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Blazewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandāo, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, T. -Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J. F., Dawson, M. N., De Clerck, O., Decock, W., De Grave, S., de Voogd, N. J., Domning, D. P., Emig, C. C., Erseus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H. J. M., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gomez-Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K. L., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C. B., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stohr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Tyler, S., Uetz, P., van der Land, J., Vanhoorne, B., van Ofwegen, L. P., van Soest, R. W. M., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P. & Costello, M. J. 2012. The magnitude of global marine species diversity. Curr. Biol. 22:2189-2202.   DOI
20 Bik, H. M., Fournier, D., Sung, W., Bergeron, R. D. & Thomas, W. K. 2013. Intra-genomic variation in the ribosomal repeats of nematodes. PLoS ONE 8:e78230.   DOI
21 Chamberlain, S. A. & Szocs, E. 2013. taxize: taxonomic search and retrieval in R. F1000Res 2:191.   DOI
22 Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.   DOI
23 Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J. & Knight, R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-336.   DOI
24 Cha, R. S. & Thilly, W. G. 1993. Specificity, efficiency, and fidelity of PCR. PCR Methods Appl. 3:S18-S29.   DOI
25 Crampton-Platt, A., Timmermans, M. J., Gimmel, M. L., Kutty, S. N., Cockerill, T. D., Vun Khen, C. & Vogler, A. P. 2015. Soup to tree: the phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean rainforest sample. Mol. Biol. Evol. 32:2302-2316.   DOI
26 Crampton-Platt, A., Yu, D. W., Zhou, X. & Vogler, A. P. 2016. Mitochondrial metagenomics: letting the genes out of the bottle. Gigascience 5:15.   DOI
27 Davenport, C. F. & Tümmler, B. 2013. Advances in computational analysis of metagenome sequences. Environ. Microbiol. 15:1-5.   DOI
28 Decelle, J., Probert, I., Bittner, L., Desdevises, Y., Colin, S., de Vargas, C., Galí, M., Simo, R. & Not, F. 2012. An original mode of symbiosis in open ocean plankton. Proc. Natl. Acad. Sci. U. S. A. 109:18000-18005.   DOI
29 Dodsworth, S. 2015. Genome skimming for next-generation biodiversity analysis. Trends Plant Sci. 20:525-527.   DOI
30 Drummond, A. J., Newcomb, R. D., Buckley, T. R., Xie, D., Dopheide, A., Potter, B. C. M., Heled, J., Ross, H. A., Tooman, L., Grosser, S., Park, D., Demetras, N. J., Stevens, M. I., Russell, J. C., Anderson, S. H., Carter, A. & Nelson, N. 2015. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4:46.   DOI
31 Eberhardt, U. 2012. Methods for DNA barcoding of fungi. Methods Mol. Biol. 858:183-205.   DOI
32 Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998.   DOI
33 Elbrecht, V. & Leese, F. 2015. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass: sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10:e0130324.   DOI
34 Federhen, S. 2012. The NCBI Taxonomy database. Nucleic Acids Res. 40(Database issue):D136-D143.   DOI
35 Fenchel, T. 1988. Marine plankton food chains. Annu. Rev. Ecol. Syst. 19:19-38.   DOI
36 Fontaneto, D., Kaya, M., Herniou, E. A. & Barraclough, T. G. 2009. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol. Phylogenet. Evol. 53:182-189.   DOI
37 Greshake, B., Zehr, S., Dal Grande, F., Meiser, A., Schmitt, I. & Ebersberger, I. 2016. Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens. Mol. Ecol. Resour. 16:511-523.   DOI
38 Haider, B., Ahn, T. -H., Bushnell, B., Chai, J., Copeland, A. & Pan, C. 2014. Omega: an overlap-graph de novo assembler for metagenomics. Bioinformatics 30:2717-2722.   DOI
39 Hays, G. C., Richardson, A. J. & Robinson, C. 2005. Climate change and marine plankton. Trends Ecol. Evol. 20:337-344.   DOI
40 Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C. & Baird, D. J. 2011. Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE 6:e17497.   DOI
41 Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. 2003a. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270:313-321.   DOI
42 Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U. S. A. 101:14812-14817.   DOI
43 Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Biol. Sci. 270(Suppl. 1):S96-S99.
44 Hillmann, B., Al-Ghalith, G. A., Shields-Cutler, R. R., Zhu, Q., Gohl, D. M., Beckman, K. B., Knight, R. & Knights, D. 2018. Evaluating the information content of shallow shotgun metagenomics. mSystems 3:e00069-18.
45 Huson, D. H., Mitra, S., Ruscheweyh, H. -J., Weber, N. & Schuster, S. C. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21:1552-1560.   DOI
46 Krehenwinkel, H., Wolf, M., Lim, J. Y., Rominger, A. J., Simison, W. B. & Gillespie, R. G. 2017. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7:17668.   DOI
47 Kress, W. J. & Erickson, D. L. 2008. DNA barcodes: genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. U. S. A. 105:2761-2762.   DOI
48 Leasi, F. & Todaro, M. A. 2009. Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha). Mar. Biol. 156:1335-1346.   DOI
49 Kress, W. J., Garcia-Robledo, C., Uriarte, M. & Erickson, D. L. 2015. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 30:25-35.   DOI
50 Kroger, N. & Poulsen, N. 2008. Diatoms-from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 42:83-107.   DOI
51 Lee, H. -G., Kim, H. M., Min, J., Kim, K., Park, M. G., Jeong, H. J. & Kim, K. Y. 2017. An advanced tool, droplet digital PCR (ddPCR), for absolute quantification of the red-tide dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae). Algae 32:189-197.   DOI
52 Linard, B., Crampton-Platt, A., Gillett, C. P., Timmermans, M. J. & Vogler, A. P. 2015. Metagenome skimming of insect specimen pools: potential for comparative genomics. Genome Biol. Evol. 7:1474-1489.   DOI
53 Liu, S., Wang, X., Xie, L., Tan, M., Li, Z., Su, X., Zhang, H., Misof, B., Kjer, K. M., Tang, M., Niehuis, O., Jiang, H. & Zhou, X. 2016. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Mol. Ecol. Resour. 16:470-479.   DOI
54 Losos, J. B. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address. Am. Nat. 175:623-639.   DOI
55 Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S., Cepicka, I., Decelle, J., Dunthorn, M., Fiore-Donno, A. M., Gile, G. H., Holzmann, M., Jahn, R., Jirku, M., Keeling, P. J., Kostka, M., Kudryavtsev, A., Lara, E., Lukes, J., Mann, D. G., Mitchell, E. A. D., Nitsche, F., Romeralo, M., Saunders, G. W., Simpson, A. G. B., Smirnov, A. V., Spouge, J. L., Stern, R. F., Stoeck, T., Zim-mermann, J., Schindel, D. & de Vargas, C. 2012. CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10:e1001419.   DOI
56 Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., Cheung, D. W., Yiu, S. -M., Peng, S., Xiaoqian, Z., Liu, G., Liao, X., Li, Y., Yang, H., Wang, J., Lam, T. -W. & Wang, J. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18.   DOI
57 Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10-12.   DOI
58 Kunin, V., Copeland, A., Lapidus, A., Mavromatis, K. & Hugenholtz, P. 2008. A bioinformatician's guide to metagenomics. Microbiol. Mol. Biol. Rev. 72:557-578.   DOI
59 McManus, G. B. & Katz, L. A. 2009. Molecular and morphological methods for identifying plankton: what makes a successful marriage? J. Plankton Res. 31:1119-1129.   DOI
60 Nilakanta, H., Drews, K. L., Firrell, S., Foulkes, M. A. & Jablonski, K. A. 2014. A review of software for analyzing molecular sequences. BMC Res. Notes 7:830.   DOI
61 Porter, T. M. & Hajibabaei, M. 2018. Scaling up: a guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27:313-338.   DOI
62 Pawluczyk, M., Weiss, J., Links, M. G., Egana Aranguren, M., Wilkinson, M. D. & Egea-Cortines, M. 2015. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal. Bioanal. Chem. 407:1841-1848.   DOI
63 Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420-1428.   DOI
64 Porazinska, D. L., Giblin-Davis, R. M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T. O., Tucker, A. E., Sung, W. & Thomas, W. K. 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol. Ecol. Resour. 9:1439-1450.   DOI