Browse > Article
http://dx.doi.org/10.4014/jmb.2203.03037

KIF26B-AS1 Regulates TLR4 and Activates the TLR4 Signaling Pathway to Promote Malignant Progression of Laryngeal Cancer  

Li, Li (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City)
Han, Jiahui (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City)
Zhang, Shujia (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City)
Dong, Chunguang (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City)
Xiao, Xiang (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.10, 2022 , pp. 1344-1354 More about this Journal
Abstract
Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.
Keywords
KIF26B-AS1; FUS; TLR4; TLR4 signaling pathway; laryngeal cancer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu T, Zuo JJ, Li F, Xu YC, Zheng AY, Tao ZZ. 2019. LncRNA SNHG1 promotes cell proliferation in laryngeal cancer via Notch1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 23: 6562-6569.
2 Hu W, Dong N, Huang J, Ye B. 2019. Long non-coding RNA PCAT1 promotes cell migration and invasion in human laryngeal cancer by sponging miR-210-3p. J. BUON 24: 2429-2434.
3 Chen T, Wang X, Li C, Zhang H, Liu Y, Han D, et al. 2021. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene 40: 2756-2771.   DOI
4 Wang J, Zhang Y, Song H, Yin H, Jiang T, Xu Y, et al. 2021. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Mol. Cancer 20: 81.   DOI
5 Bian S. 2020. miR-4319 inhibited the development of thyroid cancer by modulating FUS-stabilized SMURF1. J. Cell. Biochem. 121: 174-182.   DOI
6 Wu T, Wang G, Zeng X, Sun Z, Li S, Wang W, et al. 2021. Hsa_circ_0006232 promotes laryngeal squamous cell cancer progression through FUS-mediated EZH2 stabilization. Cell Cycle 20: 1799-1811.   DOI
7 Yuan Z, Xiu C, Song K, Pei R, Miao S, Mao X, et al. 2018. Long non-coding RNA AFAP1-AS1/miR-320a/RBPJ axis regulates laryngeal carcinoma cell stemness and chemoresistance. J. Cell. Mol. Med. 22: 4253-4262.   DOI
8 Li JH, Liu S, Zhou H, Qu LH, Yang JH. 2014. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42: D92-97.   DOI
9 Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-462.   DOI
10 Zhou P, Li Y, Li B, Zhang M, Liu Y, Yao Y, et al. 2019. NMIIA promotes tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer. Oncogene 38: 5500-5515.   DOI
11 Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A, et al. 2009. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res. 69: 3105-3113.
12 Panaro MA, Corrado A, Benameur T, Paolo CF, Cici D, Porro C. 2020. The emerging role of curcumin in the modulation of TLR-4 signaling pathway: Focus on neuroprotective and anti-rheumatic properties. Int. J. Mol. Sci. 21: 2299.   DOI
13 Sheng J, He X, Yu W, Chen Y, Long Y, Wang K, et al. 2021. p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma. Cancer Lett. 503: 54-68.   DOI
14 Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, et al. 2009. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 28: 4353-4363.   DOI
15 Liu H, Sun Y, Tian H, Xiao X, Zhang J, Wang Y, et al. 2019. Characterization of long non-coding RNA and messenger RNA profiles in laryngeal cancer by weighted gene co-expression network analysis. Aging 11: 10074-10099.   DOI
16 Xie P, Guo Y. 2020. LINC00205 promotes malignancy in lung cancer by recruiting FUS and stabilizing CSDE1. Biosci. Rep. 40:BSR20190701.   DOI
17 Silveira HS, Lupi LA, Romagnoli GG, Kaneno R, da Silva Nunes I, Favaro WJ, et al. 2020. P-MAPA activates TLR2 and TLR4 signaling while its combination with IL-12 stimulates CD4+ and CD8+ effector T cells in ovarian cancer. Life Sci. 254: 117786.   DOI
18 Vassileiou A, Vlastarakos PV, Kandiloros D, Delicha E, Ferekidis E, Tzagaroulakis A, et al. 2012. Laryngeal cancer: smoking is not the only risk factor. B-ENT 8: 273-278.
19 Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. 2019. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 18: 20.   DOI
20 Yang T, Li S, Liu J, Yin D, Yang X, Tang Q. 2018. lncRNA-NKILA/NF-κB feedback loop modulates laryngeal cancer cell proliferation, invasion, and radioresistance. Cancer Med. 7: 2048-2063.   DOI
21 Ma L, Bajic VB, Zhang Z. 2013. On the classification of long non-coding RNAs. RNA Biol. 10: 925-933.
22 Bozzato A, Pillong L, Schick B, Lell MM. 2020. [Current diagnostic imaging and treatment planning for laryngeal cancer]. Radiologe 60: 1026-1037.   DOI
23 Altieri A, Garavello W, Bosetti C, Gallus S, La Vecchia C. 2005. Alcohol consumption and risk of laryngeal cancer. Oral Oncol. 41: 956-965.   DOI
24 Baird BJ, Sung CK, Beadle BM, Divi V. 2018. Treatment of early-stage laryngeal cancer: A comparison of treatment options. Oral Oncol. 87: 8-16.   DOI
25 Bhan A, Soleimani M, Mandal SS. 2017. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 77: 3965-3981.
26 Li H, Zhang H, Wang G, Chen Z, Pan Y. 2020. LncRNA LBX2-AS1 facilitates abdominal aortic aneurysm through miR-4685-5p/ LBX2 feedback loop. Biomed. Pharmacother. 129: 109904.   DOI
27 Zhuang S, Liu F, Wu P. 2019. Upregulation of long noncoding RNA TUG1 contributes to the development of laryngocarcinoma by targeting miR-145-5p/ROCK1 axis. J. Cell. Biochem. 120: 13392-13402.   DOI
28 Portz B, Lee BL, Shorter J. 2021. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46: 550-563.   DOI
29 Mao J, Sun Z, Cui Y, Du N, Guo H, Wei J, et al. 2020. PCBP2 promotes the development of glioma by regulating FHL3/TGF-β/Smad signaling pathway. J. Cell. Physiol. 235: 3280-3291.   DOI
30 Wang X, Yu B, Jin Q, Zhang J, Yan B, Yang L, et al. 2020. Regulation of laryngeal squamous cell cancer progression by the lncRNA RP11-159K7.2/miR-206/DNMT3A axis. J. Cell. Mol. Med. 24: 6781-6795.   DOI
31 Zhang X, Wu N, Wang J, Li Z. 2019. LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR-23a/ APAF-1 axis. J. Cell. Mol. Med. 23: 6708-6719.   DOI
32 Chen J, Wu Y, Luo X, Jin D, Zhou W, Ju Z, et al. 2021. Circular RNA circRHOBTB3 represses metastasis by regulating the HuRmediated mRNA stability of PTBP1 in colorectal cancer. Theranostics 11: 7507-7526.   DOI
33 Hasnat S, Hujanen R, Nwaru BI, Salo T, Salem A. 2020. The prognostic value of toll-like receptors in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Int. J. Mol. Sci. 21: 7255.   DOI
34 Shen HB, Chou KC. 2009. A top-down approach to enhance the power of predicting human protein subcellular localization: HummPLoc 2.0. Anal. Biochem. 394: 269-274.   DOI
35 Lin Y, Pan X, Shen HB. 2021. lncLocator 2.0: a cell-line-specific subcellular localization predictor for long non-coding RNAs with interpretable deep learning. Bioinformatics doi: 10.1093/bioinformatics/btab127. Online ahead of print.   DOI
36 Canzler S, Hackermuller J. 2020. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinformatics 21: 561.   DOI
37 Zhao W, Jin Y, Wu P, Yang J, Chen Y, Yang Q, et al. 2020. LINC00355 induces gastric cancer proliferation and invasion through promoting ubiquitination of P53. Cell Death Discov. 6: 99.   DOI
38 Lim KH, Staudt LM. 2013. Toll-like receptor signaling. Cold Spring Harbor Perspect. Biol. 5: a011247.   DOI
39 Huang DN, Liu HW, Li ZD. 2020. Expression of lncRNA-ATB in laryngeal carcinoma and its relationship with prognosis. Eur. Rev. Med. Pharmacol. Sci. 24: 11148-11153.
40 Sun Z, Luo Q, Ye D, Chen W, Chen F. 2012. Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Mol. Cancer 11: 33.   DOI
41 Ou T, Lilly M, Jiang W. 2018. The pathologic role of toll-like receptor 4 in prostate cancer. Front. Immunol. 9: 1188.   DOI
42 Zhang G, Fan E, Zhong Q, Feng G, Shuai Y, Wu M, et al. 2019. Identification and potential mechanisms of a 4-lncRNA signature that predicts prognosis in patients with laryngeal cancer. Hum. Genomics 13: 36.   DOI
43 Huang Y, Guo Q, Ding XP, Wang X. 2020. Mechanism of long noncoding RNAs as transcriptional regulators in cancer. RNA Biol. 17: 1680-1692.   DOI
44 Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, et al. 2003. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. New Eng. J. Med. 349: 2091-2098.   DOI
45 Huh G, Ahn SH, Suk JG, Lee MH, Kim WS, Kwon SK, et al. 2020. Severe late dysphagia after multimodal treatment of stage III/IV laryngeal and hypopharyngeal cancer. Jpn. J. Clin. Oncol. 50: 185-192.   DOI
46 Peters TT, van der Laan BF, Plaat BE, Wedman J, Langendijk JA, Halmos GB. 2011. The impact of comorbidity on treatment-related side effects in older patients with laryngeal cancer. Oral Oncol. 47: 56-61.   DOI
47 Fang Y, Fullwood MJ. 2016. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14: 42-54.   DOI
48 Cossu AM, Mosca L, Zappavigna S, Misso G, Bocchetti M, De Micco F, et al. 2019. Long non-coding RNAs as important biomarkers in laryngeal cancer and other head and neck tumours. Int. J. Mol. Sci. 20: 3444.   DOI
49 Feng Y, Yang Y, Zhao X, Fan Y, Zhou L, Rong J, et al. 2019. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis. 10: 792.   DOI
50 Yang L, Xue Y, Liu J, Zhuang J, Shen L, Shen B, et al. 2017. Long noncoding RNA ASAP1-IT1 promotes cancer stemness and predicts a poor prognosis in patients with bladder cancer. Neoplasma 64: 847-855.   DOI
51 Guan X, Zong ZH, Liu Y, Chen S, Wang LL, Zhao Y. 2019. circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol. Ther. Nucleic Acids 18: 882-892.   DOI
52 Obid R, Redlich M, Tomeh C. 2019. The treatment of laryngeal cancer. Oral Maxillofac. Surge. Clin. North Am. 31: 1-11.   DOI