• Title/Summary/Keyword: sub-grain

Search Result 939, Processing Time 0.023 seconds

Numerical analysis of CZ growth process for sapphire crystal of 300 mm length: Part II. Predictions of crystal growth length without sub-grain defects (300 mm 길이의 사파이어 단결정 대한 CZ 성장공정의 수치해석: Part II. Subgrain 결함이 없는 단결정 성장 길이의 예측)

  • Shin, Ho Yong;Hong, Su Min;Yoon, Jong Won;Jeong, Dae Yong;Im, Jong In
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.272-278
    • /
    • 2013
  • In this study, a c-axis displacement and an internal stress of the sapphire crystal of 300 mm length have been analyzed numerically and the crystal length having no sub-grain defects have been predicted. The hot zone structures were modified with the crucible geometry change and the additional insulation layer installed above the crucible. The simulation results show that the c-axis displacement difference between the original hot zone and others originated from the sub-grain defect formations in the sapphire ingot. When the crystal grown by CZ (Czochralski) grower using the modified hot zone, the crystal length having no sub-grain defects was increased about 57 mm maximum than the original one. When the simulation results compared with the experimental one, the predicted crystal length having no sub-grain defects were well corresponded with the experiment one in c-axis wafer of the 300 mm sapphire ingot. Therefore the sapphire crystal of 250 mm length having no sub-grain defects was successfully grown by CZ process.

Effect of sintering temperature on microstructure and dielectric properties in (Dy, Mg)-doped BaTiO3 (Dy 및 Mg가 첨가된 BaTiO3에서 소결 온도가 미세구조와 유전특성에 미치는 영향)

  • Woo, Jong-Won;Kim, Sung-Hyun;Choi, Moon-Hee;Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.175-182
    • /
    • 2022
  • Rare-earth elements were doped with Mg to enhance the temperature stability of dielectric properties of BaTiO3 for its application to MLCC (Multi-Layer Ceramic Capacitor). The additives strongly affect both grain growth and densification behaviors during sintering, and hence dielectric properties. The additive effects therefore should be examined in each system with different additives. This study investigated the crystal structure, grain growth and densification behaviors and related variations in dielectric constant with respect to sintering temperature. Dielectric constant appears to be varied with grain size in a temperature range between 1200 and 1300℃, suggesting the importance of grain size control. The temperature dependence of grain size variation was well explained by an established theory correlating the grain growth behavior with grain boundary structure. This accordance provides a basis for sintering technique to control grain growth thus to improve dielectric constant in rare-earth doped BaTiO3.

Effects of Sintering Conditions on the Electrical Conductivity of 1 wt% Y2O3-Doped AlN Ceramics (1 wt% Y2O3 첨가계 AlN 세라믹스의 소결 조건에 따른 전기전도도)

  • Lee, Won-Jin;Lee, Sung-Min;Shim, Kwang-Bo;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.116-123
    • /
    • 2007
  • Electrical properties of AlN ceramics sintered with 1 wt% $Y_2O_3$ have been investigated. From the impedance spectroscopy, electrical conductivity of grain boundary was found to be much lower than that of grain. DC conductivity measurement showed the electrode polarization effects caused by blocking electrode. The heat-treatment at $1700^{\circ}C$ of the specimen sintered at $1850^{\circ}C$ transformed continuous pain boundary phases along triple boundary junctions into isolated particles in grain comers. The heat-treatment induced decreases both in grain and grain boundary conductivity, and in DC electrical conductivities. From the analysis on the transference number, ionic conductivity was shown to be more dominant than electron conductivity, which was due to ion compensation mechanism during oxygen incorporation into grain.

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films with Various Drying Temperature for FRAM Applications (FRAM 응용을 위한 건조온도에 따른 BLT 박막의 강유전 특성)

  • 김경태;김동표;김창일;김태형;강동희;심일운
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2003
  • Ferroelectric lanthanum-substituted Bi$_4$Ti$_3$O$_{12}$(BLT) thin films were fabricated by spin-coating onto a Pt/Ti/SiO$_2$/Si substrate by metalorganic decomposition technique. The grain size in BLT thin films were prepared with controlled by various drying process. The effect of grain size on the crystallization and ferroelectric properties were investigated by x-ray diffraction and field emission scanning electron microscope. The dependence of crystallization and electrical properties are related to the grain size in BLT thin films with different drying temperature. The remanent polarization of BLT thin film increases with the increasing grain size. The value of 2P$_{r}$ and E$_{c}$ of BLT thin film dried at 45$0^{\circ}C$ were 25.9 $\mu$C/$\textrm{cm}^2$ and 85 kV/cm, respectively. The BLT thin film with larger grain size has better fatigue properties. The fatigue properties revealed that small grained film showed more degradation of switching charge than large grained films.lms.s.

Impedance Properties of Phase-Pure Titanium Dioxide Ceramics Sintered at Different Temperatures

  • Cui, Liqi;Niu, Ruifeng;Wang, Weitian
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.181-185
    • /
    • 2022
  • In this study, phase-pure titanium dioxide TiO2 ceramics are sintered using standard high-temperature solid-state reaction technique at different temperatures (1,000, 1,100, 1,200, 1,300, 1,400 ℃). The effect of sintering temperature on the densification and impedance properties of TiO2 ceramics is investigated. The bulk density and average grain size increase with the increase of sintering temperature. Impedance spectroscopy analysis (complex impedance Z* and complex modulus M*), performed in a broad frequency range from 100 Hz to 10 MHz, indicates that the TiO2 ceramics are dielectrically heterogeneous, consisting of grains and grain boundaries. The complex impedance Z* -plane indicates the resistance of grains of the TiO2 ceramics increases with increasing sintering temperature, while that of grain boundaries develops in the opposing direction. The complex modulus M*-plane shows a grain capacitance that seems to be independent of the sintering temperature, while that of the grain boundaries decreases with increasing sintering temperature. These results suggest that different sintering temperatures have effects on the microstructure, leading to changes in the impedance properties of TiO2 ceramics.

Crystal Defects and Grain Boundary Properties in ZnO-Zn2BiVO6-Co3O4-Cr2O3-CaCO3 Varistor (ZnO-Zn2BiVO6-Co3O4-Cr2O3-CaCO3 바리스터 내의 결정결함과 입계특성)

  • Hong, Youn-Woo;Ha, Man-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.276-280
    • /
    • 2019
  • In this study, we investigated the crystal defects and grain boundary properties in a ZZCCC ($ZnO-Zn_2BiVO_6-Co_3O_4-Cr_2O_3-CaCO_3$) varistor, with the liquid-phase sintering aid $Zn_2BiVO_6$ developed by our laboratory. The ZZCCC varistor sintered at $1,200^{\circ}C$ exhibited excellent nonlinear current-voltage characteristics (${\alpha}=63$), with oxygen vacancy ($V_o^*$ ; 0.35 eV) as a main defect, and an apparent activation energy of 1.1 eV with an electrically single grain boundary. Therefore, among the various additives to improve the electrical properties of ZnO varistors, if $Zn_2BiVO_6$ is used as a liquid phase sintering aid, it will be ideal to use Co for the oxygen vacancy and Ca for the electrically single grain boundary. This will allow the good properties of ZnO varistors to be maintained up to high sintering temperatures.

RECYCLING PROCESS OF U3O8 POWDER IN MnO-Al2O3 DOPED LARGE GRAIN UO2 PELLETS

  • Oh, Jang Soo;Kim, Dong-Joo;Yang, Jae Ho;Kim, Keon Sik;Rhee, Young Woo;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.117-124
    • /
    • 2014
  • The effect of various process variables on the powder properties of recycled $U_3O_8$ from MnO-$Al_2O_3$ doped large grain $UO_2$ pellets and the effect of those recycled $U_3O_8$ powders on the sintered density and grain size of MnO-$Al_2O_3$ doped large grain $UO_2$ pellets have been investigated. The evolution of morphology, size, and BET surface area of the recycled $U_3O_8$ powders according to the respective variation of the thermo-mechanical treatment variables of oxidation temperature, powder milling, and sequential cyclic heat treatment of oxidation and then reduction was examined. The correlation between the BET surface area of recycled $U_3O_8$ powder and the sintered pellet properties of MnO-$Al_2O_3$ doped pellets showed that the pellet density and grain size of doped pellets were increased and then saturated by increasing the BET surface area of the recycled $U_3O_8$ powder. The density and grain size of the pellets were maximized when the BET surface area of the recycled $U_3O_8$ powder was in the vicinity of $3m^2/g$. Among the process variables applied in this study, the cyclic heat treatment followed by low temperature oxidation was a potential process combination to obtain the sinter-active $U_3O_8$ powder.

Grain growth behavior of porous Al2O3 with addition of La2O3 prepared via freeze-casting (동결주조로 성형한 La2O3가 첨가된 Al2O3 다공체의 소결 중 입자성장 거동)

  • Kim, Sung-Hyun;Woo, Jong-Won;Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.231-238
    • /
    • 2022
  • To secure the mechanical strength of porous Al2O3 ceramics, which can be utilized for filters and catalyst supports is essential for their functionality and durability. Superior mechanical strength would be obtained by tailoring the densification and grain growth during sintering. This study deals with grain growth behavior of a freeze-casted Al2O3 with addition of La2O3. In a temperature range between 1400 and 1600℃, variations of average grain size with sintering time and temperature were observed and analyzed with Gtn-G0n = kt and with k = k0exp(-Ea/RT). As a result, n value and activation energy (Ea) for grain growth were calculated as 3 and 489.09 kJ/mol, respectively. These commonly confirms retardation effect of the La addition during sintering of Al2O3 porous structure. More accurate analysis on the La effect can be followed to provide useful guidance for the selection of additives for better mechanical strength in Al2O3 porous structures.

Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor (ZnO-Bi2O3-Mn3O4-Co3O4 바리스터의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.961-968
    • /
    • 2012
  • In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).

Effects of CaCO3 on the Defects and Grain Boundary Properties of ZnO-Co3O4-Cr2O3-La2O3 Ceramics (ZnO-Co3O4-Cr2O3-La2O3 세라믹스의 결함과 입계 특성에 미치는 CaCO3의 영향)

  • Hong, Youn-Woo;Ha, Man-Jin;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Yun, Ji-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.307-312
    • /
    • 2018
  • Liquid phases in ZnO varistors cause more complex phase development and microstructure, which makes the control of electrical properties and reliability more difficult. Therefore, we have investigated 2 mol% $CaCO_3$ doped $ZnO-Co_3O_4-Cr_2O_3-La_2O_3$ (ZCCLCa) bulk ceramics as one of the compositions without liquid phase sintering additive. The results were as follows: when $CaCO_3$ is added to ZCCLCa ($644{\Omega}cm$) acting as a simple ohmic resistor, CaO does not form a secondary phase with ZnO but is mostly distributed in the grain boundary and has excellent varistor characteristics (high nonlinear coefficient ${\alpha}=78$, low leakage current of $0.06{\mu}A/cm^2$, and high insulation resistance of $1{\times}10^{11}{\Omega}cm$). The main defects $Zn_i^{{\cdot}{\cdot}}$ (AS: 0.16 eV, IS & MS: 0.20 eV) and $V_o^{\bullet}$ (AS: 0.29 eV, IS & MS: 0.37 eV) were found, and the grain boundaries had 1.1 eV with electrically single grain boundary. The resistance of each defect and grain boundary decreases exponentially with increasing the measurement temperature. However, the capacitance (0.2 nF) of the grain boundary was ~1/10 lower than that of the two defects (~3.8 nF, ~2.2 nF) and showed a tendency to decrease as the measurement temperature increased. Therefore, ZCCLCa varistors have high sintering temperature of $1,200^{\circ}C$ due to lack of liquid phase additives, but excellent varistor characteristics are exhibited, which means ZCCLCa is a good candidate for realizing chip type or disc type commercial varistor products with excellent performance.