Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.12.961

Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor  

Hong, Youn-Woo (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Lee, Young-Jin (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Kim, Sei-Ki (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.12, 2012 , pp. 961-968 More about this Journal
Abstract
In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).
Keywords
ZnO varistor; Defect; Grain boundary; Impedance spectroscopy; Dielectric function;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
2 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990).   DOI
3 K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
4 R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987).   DOI
5 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990).   DOI
6 M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997).   DOI
7 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
8 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).
9 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
10 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
11 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 936 (2010).
12 Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004).   DOI
13 Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
14 H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
15 I. M. Hodge, M. D. Ingram, and A. R. West, J. Electroanal. Chem., 74, 125 (1976).   DOI
16 J. R. Macdonald, Impedance Spectroscopy, (John Wiley & Sons, New York, 1987) p. 1.
17 R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994).   DOI   ScienceOn
18 K. A. Abdullah, A. Bui, and A. Loubiere, J. Appl. Phys., 69, 4046 (1991).   DOI
19 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 949 (2009).
20 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 882 (2011).
21 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 962 (2011).