Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.4.276

Crystal Defects and Grain Boundary Properties in ZnO-Zn2BiVO6-Co3O4-Cr2O3-CaCO3 Varistor  

Hong, Youn-Woo (Virtual Engineering Center, Korea Institute of Ceramic Engineering and Technology)
Ha, Man-Jin (Virtual Engineering Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.4, 2019 , pp. 276-280 More about this Journal
Abstract
In this study, we investigated the crystal defects and grain boundary properties in a ZZCCC ($ZnO-Zn_2BiVO_6-Co_3O_4-Cr_2O_3-CaCO_3$) varistor, with the liquid-phase sintering aid $Zn_2BiVO_6$ developed by our laboratory. The ZZCCC varistor sintered at $1,200^{\circ}C$ exhibited excellent nonlinear current-voltage characteristics (${\alpha}=63$), with oxygen vacancy ($V_o^*$ ; 0.35 eV) as a main defect, and an apparent activation energy of 1.1 eV with an electrically single grain boundary. Therefore, among the various additives to improve the electrical properties of ZnO varistors, if $Zn_2BiVO_6$ is used as a liquid phase sintering aid, it will be ideal to use Co for the oxygen vacancy and Ca for the electrically single grain boundary. This will allow the good properties of ZnO varistors to be maintained up to high sintering temperatures.
Keywords
ZnO varistor; Impedance spectroscopy; Defect; Grain boundary; $Zn_2BiVO_6$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
2 D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999). [DOI:https://doi.org/10.1111/j.1151-2916.1999.tb01793.x]   DOI
3 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI:https://doi.org/10.1111/j.1151-2916.1990.tb05232.x]   DOI
4 K. Eda, IEEE Electr. Insul. Magazine, 5, 28 (1989). [DOI:https://doi.org/10.1109/57.44606]   DOI
5 R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). [DOI:https://doi.org/10.1146/annurev.ms.17.080187.001503]   DOI
6 P. R. Bueno, J. A. Varela, and E. Longo, J. Eur. Ceram. Soc., 28, 505 (2008). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.06.011]   DOI
7 S. Hirose, Y. Yamamoto, and H. Niimi, J. Appl. Phys., 104, 013701 (2008). [DOI: https://doi.org/10.1063/1.2949262]   DOI
8 Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1301 (2004). [DOI: https://doi.org/10.1016/j.ceramint.2003.12.028]   DOI
9 Y. W. Hong, Y. J. Lee, S. K. Kim, J. H. Paik, and J. H. Kim, Electron. Mater. Lett., 10, 903 (2014). [DOI: https://doi.org/10.1007/s13391-014-3331-3]   DOI
10 Y. W. Hong, Y. B. Kim, Y. J. Lee, S. K. Kim, J. H. Paik, and M. H. Jo, Korean J. Met. Mater., 52, 1017 (2014). [DOI: https://doi.org/10.3365/kjmm.2014.52.12.1017]   DOI
11 Y. W. Hong, M. J. Ha, J. H. Paik, J. H. Cho, Y. H. Jeong, and J. S. Yun, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 307 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.307]   DOI
12 Y. W. Hong, Y. B. Kim, J. H. Paik, J. H. Cho, Y. H. Jeong, J. S. Yun, and W. I. Park, J. Sens. Sci. Technol., 25, 440 (2016). [DOI: https://doi.org/10.5369/jsst.2016.25.6.440]   DOI
13 Y. W. Hong, Y. B. Kim, J. H. Paik, J. H. Cho, Y. H. Jeong, J. S. Yun, and W. I. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 74 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.2.74]   DOI
14 Y. W. Hong, M. J. Ha, J. H. Paik, J. H. Cho, Y. H. Jeong, and J. S. Yun, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 313 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.313]   DOI
15 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). [DOI: https://doi.org/10.1088/0268-1242/5/2/001]   DOI
16 A. R. West and M. Andres-Verges, J. Electroceram., 1, 125 (1997). [DOI: https://doi.org/10.1023/a:1009906315725]   DOI
17 X. Zhao, J. Li, H. Li, and S. Li, J. Appl. Phys., 111, 124106 (2012). [DOI: https://doi.org/10.1063/1.4729804]   DOI