Browse > Article
http://dx.doi.org/10.4191/KCERS.2007.44.2.116

Effects of Sintering Conditions on the Electrical Conductivity of 1 wt% Y2O3-Doped AlN Ceramics  

Lee, Won-Jin (Korea Institute of Ceramic Engineering and Technology)
Lee, Sung-Min (Korea Institute of Ceramic Engineering and Technology)
Shim, Kwang-Bo (Department of Materials Science and Engineering, Hanyang University)
Kim, Hyung-Tae (Korea Institute of Ceramic Engineering and Technology)
Publication Information
Abstract
Electrical properties of AlN ceramics sintered with 1 wt% $Y_2O_3$ have been investigated. From the impedance spectroscopy, electrical conductivity of grain boundary was found to be much lower than that of grain. DC conductivity measurement showed the electrode polarization effects caused by blocking electrode. The heat-treatment at $1700^{\circ}C$ of the specimen sintered at $1850^{\circ}C$ transformed continuous pain boundary phases along triple boundary junctions into isolated particles in grain comers. The heat-treatment induced decreases both in grain and grain boundary conductivity, and in DC electrical conductivities. From the analysis on the transference number, ionic conductivity was shown to be more dominant than electron conductivity, which was due to ion compensation mechanism during oxygen incorporation into grain.
Keywords
AlN; Electrostatic chuck (ESC); DC conductivity; Impedance spectroscopy; Ionic conductivity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 T. Watnabe, T. Kitabayashi, and C. Nakayama, 'Relationship Between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck,' Jpn. J. Appl. Phys., 32 864-871 (1993)   DOI
2 J. van Elp, P. T. M. Giesen, and A. M. M. de Groof, 'Lowthermal Expansion Electrostatic Chuck Materials and Clamp Mechanisms in Vacuun and Air,' Microelectronic Eng., 73- 74 941-47 (2004)   DOI
3 R. W. Francis and W. L. Worrell, 'High Temperature Electrical Conductivity of Aluminum Nitride,' J. Electrochem. Soc., 123 [3] 430-433 (1976)   DOI
4 J. Jamnik and J. Maier, 'Generalised Equivalent Circuits for Mass and Charge Transport: Chemical Capacitance and Its Implications,' Phy. Chem. Chem. Phys., 3 1668-1678 (2001)   DOI   ScienceOn
5 J. C. Bang, 'Fabrication of Borosilicate Glass-Coated Electrostatic Chucks(in Korean),' J. Microelectronics & Packaging Soc., 9 [1] 49-52 (2002)   과학기술학회마을
6 G. Kalkowski, S. Risse, and V. Guyenot, 'Electrostatic Chuck Behavior at Ambient Conditions,' Microelectronic Eng., 61-62 357-61 (2002)   DOI   ScienceOn
7 G. Kalkowski, S. Risse, S. Muller, and G. Harnisch, 'Electrostatic Chucks for EUV Masks,' Microelectronic Eng., 83 714-17 (2006)   DOI   ScienceOn
8 C. M. Whang, W. J. Jeong, and S. W. Choi, 'Synthesis of Aluminum Nitride Powder from Aluminum Hydroxide by Carbothermal Reduction-Nitridation(in Korean),' J. Kor. Ceram. Soc., 31 [8] 893-901 (1994)   과학기술학회마을
9 W. S. Jung, 'Synthesis of Aluminum Nitride Powders and Whiskers from a $(NH_4)[Al(edta)]{\cdot}2H_2O$( Complex under a Flow of Nitrogen(in Korean),' J. Kor. Ceram. Soc., 39 [3] 272-277 (2002)   과학기술학회마을   DOI   ScienceOn
10 S. K. Yang and J. B. Kang, 'Synthesis of Aluminum Nitride Whisker by Carbothermal Reaction I. Effect of Fluoride Addition(in Korean),' J. Kor. Ceram. Soc., 41 [2] 118-24 (2004)   과학기술학회마을   DOI   ScienceOn
11 G. A. Slack, 'Nonmetallic Crystals with High Thermal Conductivity,' J. Phy. Chem. Solids, 34 321-35 (1973)   DOI   ScienceOn
12 M. Yahagi and K. S. Goto, 'Ionic Conductivity of AlN Containing $Y_2O_3\;or\;Al_2O_3$ at 1173-1773 K,' J. Jpn. Inst. Metal, 47 [5] 419-425 (1983)   DOI
13 M. Zulfequar and A. Kumar, 'Electrical Conductivity and Dielectric Behavior of Hot-Pressed AlN,' Adv. Ceram. Mat., 3 [4] 332-336 (1988)   DOI
14 S. A. Jang and G. M. Choi, 'Electrical Conduction in Aluminum Nitride,' J. Am. Ceram. Soc., 76 [4] 957-60 (1993)   DOI   ScienceOn
15 K. Komeya, 'Effect of Various Additives on Sintering of AlN,' Yogyo-Kyokai-Shi, 89 [6] 330-336 (1981)   DOI
16 L. Weisenbach, J. A. S. Ikeda, and Y. M. Chiang, 'Distribution of Oxygen and Sintering Aids in AlN with High Thermal Conductivity,' Advances in Ceramics, 26 133 (1987)
17 T. Takahashi, N. Iwase, A. Tsuga, and M. Nagata, 'Properties and Reliability of AlN Ceramics for Power Devices,' Advanced in Ceramics, 26 [159] (1987)
18 J. Jamnik and J. Maier, 'Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions,' J. Electrochem. Soc., 146 [11] 4183-4188 (1999)   DOI
19 W.-J. Kim, D. K. Kim, and C. H. Kim, 'Morphological Effect of Second Phase on the Thermal Conductivity of AlN Ceramics,' J. Am. Ceram. Soc., 79 [3] 1066-72 (1996)   DOI
20 H. Nakano, K. Watari, H. Hayashi, and K. Urabe, 'Microstructural Characterization of High-Thermal-Conductivity Aluminum Nitride Ceramic,' J. Am. Ceram. Soc., 85 [12] 3093-3095 (2002)   DOI   ScienceOn
21 T. Watnabe, T. Kitabayashi, and C. Nakayama, 'Electrostatic Force and Absorption Current of Alumina Electrostatic Chuck,' Jpn. J. Appl. Phys., 31 2145-50 (1992)   DOI
22 W. Lai and S. M. Haile, 'Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductor: A Case Study of Ceria,' J. Am. Ceram. Soc., 88 [11] 2979-2997 (2005)   DOI   ScienceOn
23 Phase Diagrams for Ceramists, Fig. 2344
24 G. Kalkowski, S. Risse, G. Harnisch, and V. Guyenot, 'Electrostatic Chucks for Lithography Applications,' Microelectronic Eng., 57-58 219-222 (2001)   DOI   ScienceOn
25 R. Atkinson, 'A Simple Theory of the Johnsen-Rahbek Effect,' Brit. J. Appl. Phys., 2 [3] 325-332 (1969)   DOI   ScienceOn