• Title/Summary/Keyword: sub-decomposable operator

Search Result 3, Processing Time 0.022 seconds

SPECTRA OF ASYMPTOTICALLY QUASISIMILAR SUBDECOMPOSABLE OPERATORS

  • Yoo, Jong-Kwang;Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.271-279
    • /
    • 2009
  • In this paper, we prove that asymptotically quasisimilar sub-decomposable operators have equal spectra and quasisimilar decomposable operators have equal spectra. Moreover, every subscalar operator is admissible.

  • PDF

LOCAL SPECTRAL THEORY AND QUASINILPOTENT OPERATORS

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.785-794
    • /
    • 2022
  • In this paper we show that if A ∈ L(X) and R ∈ L(X) is a quasinilpotent operator commuting with A then XA(F) = XA+R(F) for all subset F ⊆ ℂ and 𝜎loc(A) = 𝜎loc(A + R). Moreover, we show that A and A + R share many common local spectral properties such as SVEP, property (C), property (𝛿), property (𝛽) and decomposability. Finally, we show that quasisimility preserves local spectrum.

ON LOCAL SPECTRAL PROPERTIES OF RIESZ OPERATORS

  • JONG-KWANG YOO
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.273-286
    • /
    • 2023
  • In this paper we show that if T ∈ L(X) and S ∈ L(X) is a Riesz operator commuting with T and XS(F) ∈ Lat(S), where F = {0} or F ⊆ ℂ ⧵ {0} is closed then T|XS(F) and T|XT(F) + S|XS(F) share the local spectral properties such as SVEP, Dunford's property (C), Bishop's property (𝛽), decomopsition property (𝛿) and decomposability. As a corollary, if T ∈ L(X) and Q ∈ L(X) is a quasinilpotent operator commuting with T then T is Riesz if and only if T + Q is Riesz. We also study some spectral properties of Riesz operators acting on Banach spaces. We show that if T, S ∈ L(X) such that TS = ST, and Y ∈ Lat(S) is a hyperinvarinat subspace of X for which 𝜎(S|Y ) = {0} then 𝜎*(T|Y + S|Y ) = 𝜎*(T|Y ) for 𝜎* ∈ {𝜎, 𝜎loc, 𝜎sur, 𝜎ap}. Finally, we show that if T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y and T is similar to S then T is Riesz if and only if S is Riesz.