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SPECTRA OF ASYMPTOTICALLY QUASISIMILAR
SUBDECOMPOSABLE OPERATORS

Jong-Kwang Yoo* and Hyuk Han**

Abstract. In this paper, we prove that asymptotically quasisimilar sub-
decomposable operators have equal spectra and quasisimilar decomposable
operators have equal spectra. Moreover, every subscalar operator is admis-
sible.

1. Introduction

Let X be a Banach space over the complex plane C. Let L(X) denote the

Banach algebra of all bounded linear operators on X. For a given T ∈ L(X),

σ(T ) denotes the spectrum of T and ker(T ) denotes the kernel of T . The

local resolvent set ρT (x) of T at the point x ∈ X is defined as the union of

all open subsets U of C for which there is an analytic function f : U → X

which satisfies (T − λ)f(λ) = x for all λ ∈ U . The local spectrum σT (x)

of T at x is then defined as σT (x) = C \ ρT (x). An operator T ∈ L(X) is

said to have the single-valued extension property, abbreviated SVEP, if for

every open set U ⊆ C, the only analytic solution f : U → X of the equation

(T − λ)f(λ) = 0 for all λ ∈ U is the zero function on U .

For every closed subset F of C, let XT (F ) = {x ∈ X : σT (x) ⊆ F}
denote the corresponding analytic spectral subspace of T . It is easy to see

that XT (F ) is a invariant subspace for T. An operator T ∈ L(X) is said to

have Dunford’s property (C) if XT (F ) is closed for every closed F ⊆ C. This

condition plays an important role in the theory of spectral operators. It is

well known that Dunford’s property (C) implies the single-valued extension

property [7].
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Let σsur(T ) denote the surjectivity spectrum of an operator T. That is,

σsur(T ) = {λ ∈ C : (T − λ)X 6= X}. It is well known that [7]

σsur(T ) =
⋃

x∈X

σT (x) ⊆ σ(T ).

Let A ⊆ C. Then the algebraic spectral subspace ET (A) is the largest

subspaces of X on which all the restrictions of T−λ, λ ∈ C\A, are surjective.

That is,

ET (F ) = span{Y ∈ lat(T ) : σsur(T |Y ) ⊆ F },

where lat(T ) denotes the collection of T−invariant subspaces of X, and T |Y
denotes the restriction of T on Y . Thus ET (A) is the largest subspace of X

with this surjectivity property but this space need not be closed in general.

An operator T ∈ L(X) is said to be admissible if for each closed F ⊆ C the

algebraic spectral subspace ET (F ) is closed. Laursen proved in [4] that if

ET (F ) is closed then ET (F ) = XT (F ). Thus the admissible operators allow

us to combine the analytic tools associated with the space XT (F ) with the

algebraic tools associated with the space ET (F ).

2. Local spectral properties of subdecomposable operators

The following Proposition is found in [4].

Proposition 2.1. Let T be a bounded linear operator on a Banach

space X. Then we have

(1) ET−λ(C \ {0}) = ET (C \ {λ}) for every λ ∈ C.

(2) ET (∩αFα) = ∩α ET (Fα) for any family {Fα} of subsets of C.

(3) ET (F ) = ∩λ/∈F ET (C \ {λ}).
(4) ker(T − λ) ⊆ ET ({λ}) for every λ ∈ C.

We say that the operator T has finite descent if for every λ ∈ C there is

an integer n ∈ N such that (T − λ)nX = (T − λ)n+1X.

Theorem 2.2. Let T be a bounded linear operator on a Banach space

X. If T has finite descent then there exists a positive integer p ∈ N for



Spectra of subdecomposable operators 273

which

ET (F ) =
⋂

λ/∈F

(T − λ)pX

for any subset F of C. In particular, ET (φ) =
⋂

λ∈C(T − λ)pX.

Proof. Let p ∈ N such that (T − λ)pX = (T − λ)p+1X. Then by Propo-

sition 2.1, we have,

ET (F ) =
⋂

λ/∈F

ET (C \ {λ}) =
⋂

λ/∈F

ET−λ(C \ {0}).

Thus it suffices to show that ET−λ(C \ {0}) = (T − λ)pX for each λ ∈ C.

It is easily show that

ET−λ(C \ {0}) ⊆ (T − λ)pX

⊆ E(T−λ)p(C \ {0})
⊆ ET−λ(C \ {0}).

Hence (T − λ)pX = ET−λ(C \ {0}). Therefore we have,

ET (F ) =
⋂

λ/∈F

(T − λ)pX.

This completes the proof. ¤

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable

complex valued functions ϕ(z), z = x1 + ix2, x1, x2 ∈ R, defined on the

complex plane C with the topology of uniform convergence of every deriva-

tive on each compact subset of C. That is, with the topology generated by

the family of pseudo-norm

|ϕ|K,m = max
|p|≤m

sup
z∈K

|Dpϕ(z)|,

where K is an arbitrary compact subset of C, m a non-negative integer,

p = (p1, p2), p1, p2 ∈ N, |p| = p1 + p2 and

Dpϕ =
∂|p|ϕ

∂x1
p1∂x2

p2
, z = x1 + ix2.
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An operator T ∈ L(X) on a complex Banach space X is called a gener-

alized scalar operator if there exists a continuous algebra homomorphism

Φ : C∞(C) → L(X) satisfying Φ(1) = I and Φ(z) = T , where I is the

identity operator on X and z denotes the identity function on C. Such a

continuous function Φ is in fact an operator valued distribution and it is

called a spectral distribution for T . The class of generalized scalar operators

were introduced by Colojoarǎ and Foiaş [1]. An operator T ∈ L(X) on a

complex Banach space X is said to be subscalar if T is similar to the restric-

tion of a generalized scalar operator to one of its closed invariant subspaces.

An operator T ∈ L(X) is called decomposable if for every open covering

{U, V } of the complex plane C, there exist Y, Z ∈ Lat(T ) the collection of

all closed T -invariant linear subspaces of X such that

σ(T |Y ) ⊂ U, σ(T |Z) ⊂ V and Y + Z = X.

An important subclass of the decomposable operators is formed by the gen-

eralized scalar operators. It is well known that decomposable operator T on

a Banach space has Dunford’s property (C) [7]. An operator T ∈ L(X) is

called subdecomposable if T is similar to the restriction of a decomposable

operator to one of its closed invariant subspaces.

Proposition 2.3. If T ∈ L(X) is subscalar then T is admissible.

Proof. Let F ⊆ C be a closed, and let S ∈ L(Y ) be a generalized scalar

extension of T , that is, T ∈ L(X) is similar to the restriction of a decom-

posable operator S ∈ L(Y ) to one of its closed invariant subspace. Clearly

T inherits Dunford’s property (C) from the decomposability of S. Thus T

has Dunford’s property (C). Since S is a generalized scalar, ES(F ) = YS(F )

for all closed F subset of C. Hence we have,

ET (F ) ⊆ ES(F ) ∩X

= YS(F ) ∩X

⊆ YS(F )
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If λ ∈ C \ F , then T − λ is bijective on ET (F ). Thus λ ∈ ρ(T |ET (F )) and

hence σ(T |ET (F )) ⊆ F. Therefore we have,

ET (F ) ⊆ ET (F ) ⊆ XT (F ) ⊆ ET (F ).

This completes the proof. ¤

Let X and Y be Banach spaces over the complex field C and let L(X,Y )

denote the space of all bounded linear operators from X to Y. For given op-

erators T ∈ L(X) and S ∈ L(Y ), we consider the corresponding commutator

C(S, T ) : L(X, Y ) −→ L(X,Y ) defined by

C(S, T )A = SA−AT for all A ∈ L(X, Y ).

It is easy to see that for each n ∈ N,

C(S, T )nA = C(S, T )n−1(SA−AT )

=
n∑

k=0

(
n

k

)
(−1)kSn−kAT k.

Lemma 2.4. Let T ∈ L(X) and S ∈ L(Y ). Suppose that A ∈ L(X,Y )

with C(S, T )A = 0. Then AET (F ) ⊆ ES(F ) for all F ⊆ C. Furthermore, if

ker(A) ⊆ ET (F ) and ES(F ) ⊆ AX then AET (F ) = ES(F ).

Proof. Since AET (F ) = A(T −λ)ET (F ) = (S−λ)AET (F ) for all λ ∈ C\
F, AET (F ) ⊆ ES(F ) by the maximality of ES(F ). Suppose that ker(A) ⊆
ET (F ) and ES(F ) ⊆ AX. We will show that A−1ES(F ) ⊆ ET (F ) for all

F ⊆ C. Let Z = A−1ES(F ). Then Z is invariant with respect to T. Let

x ∈ Z. Then,

Ax ∈ ES(F ) = (S − λ)ES(F ) ⊆ (S − λ)AX.

Thus there exists an element y ∈ X such that Ay ∈ ES(F ) and Ax =

(S − λ)Ay = A(T − λ)y. Therefore we have,

x− (T − λ)y ∈ ker(A) ⊆ ET (F ) ⊆ (T − λ)ET (F ).
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Hence there exists an element z ∈ ET (F ) for which x− (T −λ)y = (T −λ)z.

Thus we have,

A(x + y) ∈ ES(F ) + AET (F ) = ES(F ).

Hence y + z ∈ Z. Therefore we have,

x = (T − λ)(y + z) ∈ (T − λ)Z = (T − λ)A−1ES(F ) ⊆ ET (F ).

This implies that A−1ES(F ) ⊆ ET (F ) for all F ⊆ C. It follows from

ES(F ) ⊆ AX that

ES(F ) ⊆ AA−1ES(F ) ⊆ AET (F ).

Hence AET (F ) = ES(F ). ¤

Two bounded linear operators R ∈ L(X) and S ∈ L(Y ) are called quasi-

similar if there exist A ∈ L(X,Y ) and B ∈ L(Y, X), each injective and with

dense range, so that AT = SA and TB = BS.

An operator A ∈ L(X,Y ) is said to intertwines S and T asymptotically

if ‖C(S, T )nA‖ 1
n −→ 0 as n →∞. This condition has been investigated by

Colojoarǎ and C. Foiaş [1]. Two operators T ∈ L(X) and S ∈ L(Y ) are said

to be asymptotically quasisimilar if there are A ∈ L(X, Y ) and B ∈ L(Y, X),

both injective and with dense range, for which ‖C(S, T )nA‖ 1
n → 0 and

‖C(T, S)nB‖ 1
n → 0 as n →∞.

Proposition 2.5. Let T ∈ L(X) and let S ∈ L(Y ). If A ∈ L(X,Y )

intertwines S and T asymptotically. Then the local spectrum σT (Ax) of T

at Ax is contained in σS(x). In particular, if T and S are asymptotically

quasisimilar then σT (x) = σS(x) for every x ∈ X.

Proof. Let x ∈ X and let µ /∈ σT (x). Then there exists an open neighbor-

hood U of µ in C and an analytic function f : U −→ X on an open sunset

U of C such that (T −λ)f(λ) = x for all λ ∈ U. Define the map g : U −→ Y

by

g(λ) =
∞∑

n=0

(−1)nC(S, T )n(A)
fn(λ)

n!
for all λ ∈ U.
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Then it is easily see that the infinite series converges locally uniformly on U,

and hence g : U → Y is well defined analytic function such that (S−λ)g(λ) =

Ax for all λ ∈ U. Thus we have µ /∈ σS(Ax) and hence σS(Ax) ⊆ σT (x).

Suppose that T and S are asymptotically quasisimilar. Then by the above

result and symmetry we conclude that σT (x) = σS(x) for every x ∈ X. ¤

Theorem 2.6. Let T ∈ L(X) and let S ∈ L(Y ) be a subdecomposable

operator. Suppose that A : X −→ Y is a bounded linear operator with

dense range such that C(S, T )A = 0. Then σ(S) ⊆ σ(T ).

Proof. It is clear that σsur(T ) is closed and equal to the union of the

local spectra σT (x) for all x ∈ X. This implies that X = XT (σsur(T )). It

follows from proposition 2.5 that

Y = (AX) = (AXT (σsur(T ))) ⊆ YS(σsur(T )) = YS(σsur(T )),

since S has property (C). Also we have,

σsur(S) = σsur(S|YS(σsur(T ))) ⊆ σsur(T ).

Hence we conclude that

σ(S) = σsur(S) ⊆ σsur(T ) ⊆ σ(T ).

¤

Theorem 2.7. Let T ∈ L(X) and S ∈ L(Y ) be two subdecomposable

operators. Suppose that T and S are asymptotically quasisimilar. Then

σ(T ) = σ(S).

Proof. Assume that T and S are asymptotically quasisimilar. Then there

are A ∈ L(X,Y ) and B ∈ L(Y, X), both injective and with dense range,

for which ‖C(S, T )nA‖ 1
n → 0 and ‖C(T, S)nB‖ 1

n → 0 as n → ∞. By

Proposition 2.5, we have,

AXT (F ) ⊆ YS(F ) and BYS(F ) ⊆ XT (F )
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hold for all closed F ⊆ C. Let y ∈ Y . Then σS(y) ⊆ σsur(S) and so

y ∈ YS(σsur(S)). This implies that Y = YS(σsur(S)). Since T has property

(C) we have,

X = (BY ) = (BYS(σsur(S))) ⊆ XT (σsur(S)) = XT (σsur(S)).

Therefore we have,

σ(T ) = σsur(T ) ⊆ σsur(S) ⊆ σ(S).

Similarly, we have σ(S) ⊆ σ(T ). ¤

Corollary 2.8. Let T ∈ L(X) and S ∈ L(Y ) be two subdecomposable

operators. Suppose that T and S are quasisimilar. Then σ(T ) = σ(S).

Corollary 2.9. Let T ∈ L(X) and S ∈ L(Y ) be two decomposable

operators. Suppose that T and S are quasisimilar. Then σ(T ) = σ(S).

Let T be a bounded linear operator on a Hilbert space over the complex

plane C. Then T is said to be an M-hyponormal operator if there is a constant

M > 0 so that ‖T ∗x‖ ≤ M‖Tx‖ for every x ∈ H. Eschmeier and Putinar

proved that every M-hyponormal operator is similar to a subdecomposable

operator [3].

Corollary 2.10. Let H and K be Hilbert spaces. And let T ∈ L(H)

and S ∈ L(K) be two M-hyponormal operators. Suppose that T and S are

quasisimilar. Then σ(T ) = σ(S).
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