• 제목/요약/키워드: sub-cycle

검색결과 1,213건 처리시간 0.024초

APPLICATION OF A GENETIC ALGORITHM FOR THE OPTIMIZATION OF ENRICHMENT ZONING AND GADOLINIA FUEL (UO2/Gd2O3) ROD DESIGNS IN OPR1000s

  • Kwon, Tae-Je;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.273-282
    • /
    • 2012
  • A new effective methodology for optimizing the enrichment of low-enriched zones as well as gadolinia fuel ($UO_2/Gd_2O_3$) rod designs in PLUS7 fuel assemblies was developed to minimize the maximum peak power in the core and to maximize the cycle lifetime. An automated link code was developed to integrate the genetic algorithm (GA) and the core design code package of ALPHA/PHOENIX-P/ANC and to generate and evaluate the candidates to be optimized efficiently through the integrated code package. This study introduces an optimization technique for the optimization of gadolinia fuel rod designs in order to effectively reduce the peak powers for a few hot assemblies simultaneously during the cycle. Coupled with the gadolinia optimization, the optimum enrichments were determined using the same automated code package. Applying this technique to the reference core of Ulchin Unit 4 Cycle 11, the gadolinia fuel rods in each hot assembly were optimized to different numbers and positions from their original designs, and the maximum peak power was decreased by 2.5%, while the independent optimization technique showed a decrease of 1.6% for the same fuel assembly. The lower enrichments at the fuel rods adjacent to the corner gap (CG), guide tube (GT), and instrumentation tube (IT) were optimized from the current 4.1, 4.1, 4.1 w/o to 4.65, 4.2, 4.2 w/o. The increase in the cycle lifetime achieved through this methodology was 5 effective full-power days (EFPD) on an ideal equilibrium cycle basis while keeping the peak power as low as 2.3% compared with the original design.

Assessment of 8-isoprostane (8-isoPGF2α) in Urine of Non-Small Cell Lung Cancer (NSCLC) Patients Undergoing Chemotherapy

  • Johns, Nutjaree Pratheepawanit;Johns, Jeffrey Roy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.775-780
    • /
    • 2012
  • 8-isoprostane (8-$isoPGF_{2{\alpha}}$) is a reliable marker and considered a gold standard for lipid peroxidation. There are very few reports of 8-isoprostane levels in cancer patients, and in patients undergoing chemotherapy. Oxidative stress is however expected and has been observed in patients with cancer. This study measured 8-isoprostane levels in urine by ELISA of 25 patients undergoing chemotherapy for advanced non-small cell lung cancer, at cycles 1, 2, and 3 of treatment. It considers the creatinine clearance of the patients, and correction of 8-isoprostane levels by creatinine clearance, and overnight urine volume methods. The average 8-isoprostane levels in urine increased more than 6 to 12 fold on chemotherapy treatment, from $532{\pm}587$ pg/mL at cycle $1,6181{\pm}4334$ at cycle 2, and $5511{\pm}2055$ at cycle 3. Similar results were obtained if 8-isoprostane levels were corrected for overnight urine volume, giving averages of $285{\pm}244{\mu}g$ at cycle $1,4122{\pm}3349$ at cycle 2, and $3266{\pm}1200$ at cycle 3. No significant difference was seen in average total overnight urine volume or number of urinations between chemotherapy cycles except for a large variation in urine volume between cycle 2 and 3. Creatinine levels were significantly different only between cycles 1 and 2 (p=0.016). In conclusion, cisplatin therapy has been shown to induce high levels of lipid peroxidation in lung cancer patients and can be assessed from the 8-isoprostane marker in overnight urine, with or without urine volume correction.

CO2 포집을 고려한 가스터빈 복합화력 발전 플랜트의 시스템 대안 평가를 위한 공학 설계 (Engineering design procedure for gas turbine combined cycle power plant with post-combustion CO2 capture)

  • 이수현;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.333-335
    • /
    • 2014
  • As the user demand for power plants becomes various, design objective becomes complicated. To review the system feasibility, system objective and evaluation criteria need to be newly defined. In this study, engineering design procedure of the multi-purpose power plant, such as barge-mounted combined cycle power plant with $CO_2$ capture, was shown as a previous work for the feasibility review of the system alternatives. For the system design, heat and mass balance for each system configuration was firstly performed. Using the thermal analysis results, conceptual design of system alternatives was carried out. And then, preliminary design of the major equipment was done. The engineering calculation results of this study would be used as the evaluation data for system feasibility review.

  • PDF

양측 조립라인 균형문제의 병렬군집 알고리즘 (Parallel Clustering Algorithm for Balancing Problem of a Two-sided Assembly Line)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.95-101
    • /
    • 2022
  • NP-난제로 알려진 양측 조립라인 균형문제는 주로 메타휴리스틱 방법들을 적용하여 해를 구하고 있다. 본 논문은 총 작업완료시간 W와 순환시간 c가 주어진 양측 조립라인의 선행순서도에서 좌측, 우측과 좌·우측 무관으로 공정들을 분류하고, 좌측과 우측 각각에 대해 M* = ${\lceil}$W/c${\rceil}$개의 작업대에 Ti = c* ± α < c, c* = ${\lceil}$W/m*${\rceil}$이 되도록 공정들을 할당하는 병렬군집 알고리즘을 제안하였다. 제안된 알고리즘을 4개의 실험데이터, 17개의 c에 적용한 결과, 기존의 메타휴리스틱 방법들에 비해 최소 작업대 수 m*를 구하였으며, Tmax < c로 순환시간을 단축하였다. 또한, 제안된 알고리즘은 휴리스틱 방법임에도 불구하고, 조립라인 효율성의 극대화와 작업자간 작업시간 편차를 최소화시킬 수 있었다.

ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t) INTO GREGARIOUS m-CYCLES

  • Kim, Seong Kun
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.337-347
    • /
    • 2013
  • For an even integer m at least 4 and any positive integer $t$, it is shown that the complete equipartite graph $K_{km(2t)}$ can be decomposed into edge-disjoint gregarious m-cycles for any positive integer ${\kappa}$ under the condition satisfying ${\frac{{(m-1)}^2+3}{4m}}$ < ${\kappa}$. Here it will be called a gregarious cycle if the cycle has at most one vertex from each partite set.

수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화 (Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production)

  • 박준규;남기전;허성구;이종규;이인범;유창규
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.235-247
    • /
    • 2020
  • Sulfur-Iodine cycle (SI cycle)은 요오드와 황을 첨가하여 최종적으로 물을 열화학적으로 분해하여 산소와 수소를 생산하는 공정으로 황산분해, 요오드화 수소 분해, 분젠반응 등 세가지 반응들로 이루어져 있다. 분젠 반응은 두가지 공정 중간에 존재하므로 두 반응에 필요한 화학물을 조달하는 역할로 이에 대한 상분리 및 반응기에 대한 분석이 중요하다. 본 연구에서는 50 L/hr 수소를 생산하는 pilot scale의 Sulfur-Iodine Cycle 중 분젠 공정에 대한 모사, 민감도 분석, 민감도 분석을 토대로한 각각 상분리기와 분젠 반응기에 대한 최적 조건을 제시하였다. 열역학 물성치의 계산을 위해 Electrolyte Non-Random Two Liquid (ELECNRTL) model 사용하였다. 모델에 대한 신뢰도 확보를 위해서 실제 pilot scale의 공정 데이터와 검증을 수행하였다. 반응기의 종류를 선정하기 위해 Continuous Stirred Tank Reactor (CSTR)과 Plug Flow Reactor (PFR) 동일한 온도 및 부피 변화에서 SO2 전환율을 비교하였다. 상분리기 선정을 위해 3상 분리 시스템(기체-액체-액체)과 액체-기체 분리 후 액체-액체 구조에서 H2SO4 상과 HIX 상에서의 불순물들을 비교하였다. PFR에서 온도, 지름, 길이를 결정 변수로 SO2 전환율을 최대화 하기 위한 최적화를 수행하였는데, 온도 121 ℃와 PFR의 지름이 0.20 m 및 길이 7.6 m 일 때 SO2 전환율이 98% 최적 결과임을 확인하였다. 기존 pilot scale과 동일한 운전 조건 하에 PFR의 지름 3/8 inch, 길이 3.0 m, 120 ℃ 일 때 인입 몰량인 I2 및 H2O를 결정 변수로 SO2 전환율에 대한 최적화를 수행하였을 때, SO2 전환율이 10% 일때 H2O 및 I2 의 인입 몰량은 각각 17%와 22%로 감소하였다. 앞선 조업 조건 최적화 조건 (121 ℃, 지름 0.20 m, 길이: 7.6 m) 경우에는 SO2 전환율이 98% 일 때 H2O가 1% 그리고 I2가 7% 감소하였다. 상분리기에서 HIX 상내 H2SO4 최소화하는 목적함수에서 그에 상응하는 온도, I2와 H2O를 결정 변수로 설정하였을 때, H2O 몰량이 기존공정보다 17% 감소하고 I2 몰량이 24% 감소하였을 때 최소 불순물이 생성하였다.

V22Ti16Zr16Ni39X7(X=Cr, Co, Fe, Mn, Al) 금속수소화물전극에 관한 연구 (A Study on the V22Ti16Zr16Ni39X7(X=Cr, Co, Fe, Mn, Al) Metal Hydride Electrodes)

  • 김정선;조원일;조병원;윤경석;김상주
    • 한국수소및신에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 1994
  • Lattice structure, hydrogen absorption characteristics, discharge capacity and cycle life of $V_{22}Ti_{16}Zr_{16}Ni_{39}X_7$(X= Cr, Co, Fe, Mn, Al) alloys were investigated. The matrix phases of these alloys were the C14 Laves phase. Chromium-containing alloy had a vanadium-rich phase in addition to the Laves phase. The chromium, maganese, or aluminum-containing alloys had lower hydrogen equilibrium pressure and larger hydrogen absorption content than the cobalt or iron-containing alloys. The discharge capacities of these alloys were 270~330mAh/g. The discharge capacity according to the alloying element X decreased in the order of Mn>Cr>Co, Al)Fe. The charge/discharge cycle lives of the chromium, cobalt or iron-containing alloys were longer than those of maganese or aluminum-containing alloys due to the lower vanadium dissolution rate.

  • PDF

Zr1-xTixV0.4Ni1.2Mn0.4-yMoy계 합금전극의 Mo 함량에 따른 물성 및 전극특성 (Electrode properties upon the substitution of Mo for Mn in Zr-basd AB2-type Hydrogen Storage Alloys)

  • 서찬열;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제11권4호
    • /
    • pp.189-202
    • /
    • 2000
  • $AB_2$ type Zr-based Laves phases alloys have been studied for potential application as a negative electrode in a Ni-MH battery. The $AB_2$-type electrodes have a much higher energy density than $AB_5$-type electrodes per weight, however they have some disadvantages such as poor activation behavior and cycle life etc. Nonetheless, the $AB_2$-type electrodes have been studied very extensively due to their high energy density. In this study, in order to develop the cycle life, the Mn of $AB_2$ alloy composition was substituted partially by Mo. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The alloy powder was used below 200-325 mesh for experiments. The structures and phases of the alloys were analyzed by XRD, SEM and EDS, and measured the curve of a pressure-composition isotherms. The electrodes were prepared by cold pressing of the copper-coated(25 wt%) alloy powders, and tested by a half cell. The results are summarized as follows. The cycle life was improved with the increase of Mo amount in $Zr_{1-x}Ti_xV_{0.4}Ni_{1.2}Mn_{0.4}Mo_y$(x=0.3, 0.4) and the activation was faster, whereas the discharge capacity decreased.

  • PDF

Effects of inlet working condition and heat load on supercritical CO2 compressor performance

  • Jinze Pei;Yuanyang Zhao;Mingran Zhao;Guangbin Liu;Qichao Yang;Liansheng Li
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2812-2822
    • /
    • 2023
  • The supercritical carbon dioxide (sCO2) Brayton power cycle is more effective than the conventional power cycle and is more widely applicable to heat sources. The inlet working conditions of the compressor have a higher influence on their operating performance because the thermophysical properties of the CO2 vary dramatically close to the critical point. The flow in the sCO2 compressor is simulated and the compressor performance is analyzed. The results show that the sCO2 centrifugal compressor operates outside of its intended parameters due to the change in inlet temperature. The sCO2 compressor requires more power as the inlet temperature increases. The compressor power is 582 kW when the inlet temperature is at 304 K. But the power is doubled when the inlet temperature increases to 314 K, and the change in the isentropic efficiency is within 5%. The increase in the inlet temperature significantly reduces the risk of condensation in centrifugal compressors. When the heat load of the sCO2 power system changes, the inlet pressure to the turbine can be kept constant by regulating the rotational speed of compressors. With the increase in rotational speed, the incidence loss and condensation risk increase.

열화학싸이클 수소를 제조를 위한 (Cu0.5Mn0.5)Fe2O4의 열적 거동 (Thermal Behaviors of (Cu0.5Mn0.5)Fe2O4 for H2 production by thermochemical cycles)

  • 김진웅;최승철;주오심;정광덕
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.32-38
    • /
    • 2004
  • Thermal behaviors of $(Cu_{0.5}Mn_{0.5})Fe_2O_4$, prepared by a solid method, were investigated for $H_2$ production by a thermochemical cycle. The thermal reduction of $(Cu_{0.5}Mn_{0.5})Fe_2O_4$ started from $300^\circ{C}$ and the weight loss was 1.3 wt% up to 1200. XRD shows the prepared ferrite has the spinel structure with a lattice constant of $8.414{\AA}$ and changed to the oxygen deficient structure by thermal reduction. Oxygen and hydrogen can be separately produced by the cycles of thermal reduction and water oxidation of the oxygen deficient ferrite.