DOI QR코드

DOI QR Code

Effects of inlet working condition and heat load on supercritical CO2 compressor performance

  • Jinze Pei (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Yuanyang Zhao (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Mingran Zhao (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Guangbin Liu (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Qichao Yang (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Liansheng Li (College of Electromechanical Engineering, Qingdao University of Science and Technology)
  • Received : 2023.02.21
  • Accepted : 2023.05.05
  • Published : 2023.08.25

Abstract

The supercritical carbon dioxide (sCO2) Brayton power cycle is more effective than the conventional power cycle and is more widely applicable to heat sources. The inlet working conditions of the compressor have a higher influence on their operating performance because the thermophysical properties of the CO2 vary dramatically close to the critical point. The flow in the sCO2 compressor is simulated and the compressor performance is analyzed. The results show that the sCO2 centrifugal compressor operates outside of its intended parameters due to the change in inlet temperature. The sCO2 compressor requires more power as the inlet temperature increases. The compressor power is 582 kW when the inlet temperature is at 304 K. But the power is doubled when the inlet temperature increases to 314 K, and the change in the isentropic efficiency is within 5%. The increase in the inlet temperature significantly reduces the risk of condensation in centrifugal compressors. When the heat load of the sCO2 power system changes, the inlet pressure to the turbine can be kept constant by regulating the rotational speed of compressors. With the increase in rotational speed, the incidence loss and condensation risk increase.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 52076114), the Shandong Provincial Natural Science Foundation (Grant No. ZR2020ME168), and the Taishan Scholar Program of Shandong (No. tsqn201812073).

References

  1. G. Angelino, Carbon dioxide condensation cycles for power production, J. Eng. Power 90 (3) (1968) 287-295.  https://doi.org/10.1115/1.3609190
  2. E.G. Feher, The supercritical thermodynamic power cycle, Energy Convers. 8 (2) (1968) 85-90.  https://doi.org/10.1016/0013-7480(68)90105-8
  3. V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, 2004. 
  4. T. Conboy, J. Pasch, D. Fleming, Control of a supercritical CO2 recompression Brayton cycle demonstration loop, J. Eng. Gas Turbines Power 135 (11) (2013). 
  5. S.A. Wright, R.F. Radel, M.E. Vernon, G.E. Rochau, P.S. Pickard, Operation and Analysis of a Supercritical CO2 Brayton Cycle, Sandia Report, 2010. No SAND2010-0171. 
  6. T. Conboy, S. Wright, J. Pasch, D. Fleming, G. Rochau, R. Fuller, Performance characteristics of an operating supercritical CO2 Brayton cycle, J. Eng. Gas Turbines Power 134 (11) (2012). 
  7. K.J. Kimball, E.M. Clementoni, Supercritical carbon dioxide Brayton power cycle development overview, ASME Turbo Expo: Power for Land, Sea, and Air (2012) 931-940. 
  8. K.D. Rahner, J.H. Michael, Application of supercritical CO2 Brayton cycle Integrated System Test (IST) trace model to initial turbomachinery and Brayton loop testing, in: Supercritical CO2 Power Cycle Symposium, 2011. 
  9. T.C. Allison, N.R. Smith, R. Pelton, J.C. Wilkes, S. Jung, Experimental validation of a wide-range centrifugal compressor stage for supercritical CO2 power cycles, J. Eng. Gas Turbines Power 141 (6) (2019). 
  10. Y. Wang, G. Guenette, P. Hejzlar, M. Driscoll, Compressor design for the supercritical CO2 Brayton cycle, in: 2nd International Energy Conversion Engineering Conference, 2004. 
  11. J.E. Cha, Y.H. Ahn, J.K. Lee, J.I. Lee, H.L. Choi, Installation of the supercritical CO2 compressor performance test loop as a first phase of the SCIEL facility, in: Supercritical CO2 Power Cycle Symposium, 2014. 
  12. J.E. Cha, S.W. Bae, J. Lee, S.K. Cho, J.I. Lee, J.H. Park, Operation results of a closed supercritical CO2 simple Brayton cycle, in: Supercritical CO2 Power Cycle Symposium, 2016. 
  13. Y. Ahn, J. Lee, S.G. Kim, J.I. Lee, J.E. Cha, S.-W. Lee, Design consideration of supercritical CO2 power cycle integral experiment loop, Energy 86 (2015) 115-127.  https://doi.org/10.1016/j.energy.2015.03.066
  14. J. Cho, M. Choi, Y.J. Baik, G. Lee, H.S. Ra, B. Kim, et al., Development of the turbomachinery for the supercritical carbon dioxide power cycle, Int. J. Energy Res. 40 (5) (2016) 587-599.  https://doi.org/10.1002/er.3453
  15. M. Utamura, H. Hasuike, K. Ogawa, T. Yamamoto, T. Fukushima, T. Watanabe, et al., Demonstration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment, ASME Turbo Expo: Power for Land, Sea, and Air (2012) 155-164. 
  16. M. Aritomi, T. Ishizuka, Y. Muto, N. Tsuzuki, Performance test results of a supercritical CO2 compressor used in a new gas turbine generating system, J. Power Energy Syst. 5 (1) (2011) 45-59.  https://doi.org/10.1299/jpes.5.45
  17. L. Seshadri, S. Sathish, P. Kumar, G. Giri, A. Nassar, L. Moroz, et al., Design of 20 kW turbomachinery for closed loop supercritical carbon dioxide Brayton test loop facility, ASME Turbo Expo: Power for Land, Sea, and Air (2019), V009T38A016. 
  18. A.J. Hacks, A. Vojacek, H.J. Dohmen, D. Brillert, A. Vojacek, Experimental investigation of the sCO2-HeRo compressor, in: 2nd European Supercritical CO2 Conference, 2018. 
  19. S. Schuster, A. Hacks, D. Brillert, Lessons from testing the sCO2-HeRo turbocompressor-system, in: Supercritical CO2 Power Cycles Symposium, 2020. 
  20. A.J. Hacks, T. Freutel, M. Stratz, A. Vojacek, F. Hecker, J. Starflinger, et al., Operational experiences and design of the sCO2-HeRo loop, in: 3rd European Supercritical CO2 Conference, 2019. 
  21. A. Hacks, S. Schuster, H.J. Dohmen, F.-K. Benra, D. Brillert, Turbomachine design for supercritical carbon dioxide within the sCO2-HeRo. eu project, ASME Turbo Expo: Power for Land, Sea, and Air (2018), V009T38A003. 
  22. S.G. Kim, B. Oh, S.J. Baik, H. Yu, Y. Kim, J.I. Lee, Conceptual system design of a supercritical CO2 cooled micro modular reactor, Proc. ICAPP (2015) 3-6. 
  23. S.G. Kim, H. Yu, J. Moon, S. Baik, Y. Kim, Y.H. Jeong, et al., A concept design of supercritical CO2 cooled SMR operating at isolated microgrid region, Int. J. Energy Res. 41 (4) (2017) 512-525.  https://doi.org/10.1002/er.3633
  24. J. Lee, J.I. Lee, Y. Ahn, H. Yoon, Design methodology of supercritical CO2 Brayton cycle turbomachineries, in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2012. 
  25. S. Son, S.K. Cho, J.I. Lee, Experimental investigation on performance degradation of a supercritical CO2 radial compressor by foreign object damage, Appl. Therm. Eng. 183 (2021), 116229. 
  26. C. Hu, C. Yang, W. Yi, S. Zheng, R. Zou, M. Zhou, Influence of shroud profiling on the compressor diffuser: frozen-eddy approach and mode decomposition, Int. J. Mech. Sci. 178 (2020), 105623. 
  27. C.S. Prasad, R. Kolman, L. Pesek, Meshfree reduced order model for turbomachinery blade flutter analysis, Int. J. Mech. Sci. 222 (2022), 107222. 
  28. C. Yang, L. Fu, C. Hu, X. Shi, Modelling and dynamic mode analysis of compressor impeller spike-type stall with global stability approach, Int. J. Mech. Sci. 201 (2021), 106486. 
  29. H. Zhang, C. Yang, W. Wang, J. Chen, M. Qi, Investigation on the casing static pressure distribution and stall behaviors in a centrifugal compressor with volute, Int. J. Mech. Sci. 160 (2019) 318-331.  https://doi.org/10.1016/j.ijmecsci.2019.06.043
  30. B. Monge Brenes, Design of Supercritical Carbon Dioxide Centrifugal Compressors, 2014. 
  31. R. Pecnik, E. Rinaldi, P. Colonna, Computational fluid dynamics of a radial compressor operating with supercritical CO2, J. Eng. Gas Turbines Power 134 (12) (2012). 
  32. A. Ameli, Supercritical CO2 Numerical Modelling and Turbomachinery Design, 2019. 
  33. A. Ameli, A. Afzalifar, T. Turunen-Saaresti, J. Backman, Effects of real gas model accuracy and operating conditions on supercritical CO2 compressor performance and flow field, ASME Turbo Expo: Power for Land, Sea, and Air (2017), V009T38A011. 
  34. A. Ameli, T. Turunen-Saaresti, J. Backman, Numerical investigation of the flow behavior inside a supercritical CO2 centrifugal compressor, ASME Turbo Expo: Power for Land, Sea, and Air 140 (12) (2016), 122604. 
  35. W. Shao, J. Yang, X. Wang, Z. Ma, A real gas-based throughflow method for the analysis of SCO2 centrifugal compressors, Proc. IME C J. Mech. Eng. Sci. 234 (10) (2020) 1943-1958.  https://doi.org/10.1177/0954406220902188
  36. W. Shao, J. Yang, X. Wang, Z. Ma, Accuracy study and stability control of a property-table-based CFD strategy for modeling SCO2 compressors working near the critical point of the fluid, Appl. Therm. Eng. 183 (2021), 116222. 
  37. E. Rinaldi, R. Pecnik, P. Colonna, Steady state CFD investigation of a radial compressor operating with supercritical CO2, ASME Turbo Expo: Power for Land, Sea, and Air (2013), V008T34A008. 
  38. E. Rinaldi, R. Pecnik, P. Colonna, Numerical computation of the performance map of a supercritical CO2 radial compressor by means of three-dimensional CFD simulations, ASME Turbo Expo: Power for Land, Sea, and Air (2014), V03BT36A017. 
  39. E. Rinaldi, R. Pecnik, P. Colonna, Computational fluid dynamic simulation of a supercritical CO2 compressor performance map, J. Eng. Gas Turbines Power 137 (7) (2015), 072602. 
  40. S.G. Kim, J. Lee, Y. Ahn, J.I. Lee, Y. Addad, B. Ko, CFD investigation of a centrifugal compressor derived from pump technology for supercritical carbon dioxide as a working fluid, J. Supercrit. Fluids 86 (2014) 160-171.  https://doi.org/10.1016/j.supflu.2013.12.017
  41. N.D. Baltadjiev, C. Lettieri, Z.S. Spakovszky, An investigation of real gas effects in supercritical CO2 centrifugal compressors, J. Turbomach. 137 (9) (2015), 091003. 
  42. A. Hosangadi, Z. Liu, T. Weathers, V. Ahuja, J. Busby, Modeling multiphase effects in CO2 compressors at subcritical inlet conditions, J. Eng. Gas Turbines Power 141 (8) (2019). 
  43. J. Pei, Y. Zhao, M. Zhao, G. Liu, Q. Yang, L. Li, Effects of leading edge profiles on flow behavior and performance of supercritical CO2 centrifugal compressor, Int. J. Mech. Sci. 229 (2022), 107520. 
  44. A.B.M.T. Hasan, S. Matsuo, T. Setoguchi, A.K.M. Sadrul Islam, Effects of condensing moist air on shock induced oscillation around an airfoil in transonic internal flows, Int. J. Mech. Sci. 54 (1) (2012) 249-259.  https://doi.org/10.1016/j.ijmecsci.2011.11.004
  45. N. Sharifi, Numerical study of non-equilibrium condensing supersonic steam flow in a jet-pump based on supersaturation theory, Int. J. Mech. Sci. 165 (2020), 105221. 
  46. M. Wang, X. Lu, J. Zhu, G. Han, C. Yang, S. Zhao, et al., Wall cooling effect on separated flow transition over a highly loaded compressor blade, Int. J. Mech. Sci. 209 (2021), 106709. 
  47. J.R. Khan, Fog Cooling, Wet Compression and Droplet Dynamics in Gas Turbine Compressors, 2009. 
  48. P.K. Chidambaram, H.-D. Kim, A numerical study on the water droplet erosion of blade surfaces, Comput. Fluids 164 (2018) 125-129.  https://doi.org/10.1016/j.compfluid.2017.11.004
  49. N. Li, Q. Zhou, X. Chen, T. Xu, S. Hui, D. Zhang, Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: nonlinear wave model and solution of one-dimensional impact, Int. J. Mech. Sci. 50 (10) (2008) 1526-1542.  https://doi.org/10.1016/j.ijmecsci.2008.08.001
  50. Q. Zhou, N. Li, X. Chen, T. Xu, S. Hui, D. Zhang, Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part II: axisymmetric solution and erosion analysis, Int. J. Mech. Sci. 50 (10) (2008) 1543-1558.  https://doi.org/10.1016/j.ijmecsci.2008.08.002
  51. J.R. Khan, T. Wang, 3D modeling for wet-compression in a single stage compressor including liquid particle erosion analysis, Turbo Expo: Power for Land, Sea, and Air (2010) 205-218. 
  52. M. Zhao, Y. Zhao, J. Pei, G. Liu, Q. Yang, L. Li, Research on condensation characteristics of supercritical carbon dioxide in Laval nozzle considering working condition of power cycles, Ann. Nucl. Energy 183 (2023), 109652. 
  53. B.S. Oh, Y. Jeong, S.K. Cho, J.I. Lee, Controllability of S-CO2 power system coupled small modular reactor with improved compressor design, Appl. Therm. Eng. 192 (2021), 116957. 
  54. S.K. Cho, S. Son, J. Lee, S.-W. Lee, Y. Jeong, B.S. Oh, et al., Optimum loss models for performance prediction of supercritical CO2 centrifugal compressor, Appl. Therm. Eng. 184 (2021), 116255. 
  55. Y. Jeong, S. Son, S.K. Cho, S. Baik, J.I. Lee, Evaluation of supercritical CO2 compressor off-design performance prediction methods, Energy 213 (2020), 119071. 
  56. H.S. Pham, N. Alpy, J.H. Ferrasse, O. Boutin, J. Quenaut, M. Tothill, et al., Mapping of the thermodynamic performance of the supercritical CO2cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor, Energy 87 (2015) 412-424.  https://doi.org/10.1016/j.energy.2015.05.022
  57. J. Wang, Y. Guo, K. Zhou, J. Xia, Y. Li, P. Zhao, et al., Design and performance analysis of compressor and turbine in supercritical CO2 power cycle based on system-component coupled optimization, Energy Convers. Manag. 221 (2020), 113179. 
  58. S. Son, Y. Jeong, S.K. Cho, J.I. Lee, Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network, Appl. Energy 263 (2020), 114645. 
  59. F. Casella, G. Mangola, D. Alfani, Density-based control of air coolers in supercritical CO2 power cycles, IFAC-PapersOnLine 53 (2) (2020) 12554-12559.  https://doi.org/10.1016/j.ifacol.2020.12.1810
  60. M. Hofer, H. Ren, F. Hecker, M. Buck, D. Brillert, J. Starflinger, Simulation, analysis and control of a self-propelling heat removal system using supercritical CO2 under varying boundary conditions, Energy 247 (2022), 123500. 
  61. Y. Zhang, M. Peng, G. Xia, L. Lv, Transient thermal-hydraulic analysis of sCO2-cooled reactor system with modified RELAP5, Ann. Nucl. Energy 147 (2020), 107681. 
  62. A. Uusitalo, A. Ameli, T. Turunen-Saaresti, Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery, Energy 167 (2019) 60-79.  https://doi.org/10.1016/j.energy.2018.10.181
  63. L. Yao, Z. Zou, A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: integration of cycle conceptual design and components preliminary design, Appl. Energy 276 (2020), 115354. 
  64. C.S. Turchi, Z. Ma, J. Dyreby, Supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems, in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2012. 
  65. H. Ding, D.G. Lu, D.T. Sui, Y.L. Zhang, Development of transient thermal-hydraulic analysis code for SCO2-cooled reactor coupled with Brayton cycle and its application, Ann. Nucl. Energy 175 (2022), 109255. 
  66. H. Li, Y. Ju, C. Zhang, Optimization of supercritical carbon dioxide recompression Brayton cycle considering anti-condensation design of centrifugal compressor, Energy Convers. Manag. 254 (2022), 115207.