• Title/Summary/Keyword: sub-channel

Search Result 931, Processing Time 0.035 seconds

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

Electrophysiological Properties of Ion Channels in Ascaris suum Tissue Incorporated into Planar Lipid Bilayers

  • Park, Kwon Moo;Kim, Sun-Don;Park, Jin Bong;Hong, Sung-Jong;Ryu, Pan Dong
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Ion channels are important targets of anthelmintic agents. In this study, we identified 3 types of ion channels in Ascaris suum tissue incorporated into planar lipid bilayers using an electrophysiological technique. The most frequent channel was a large-conductance cation channel (209 pS), which accounted for 64.5% of channels incorporated (n=60). Its open-state probability (Po) was ~0.3 in the voltage range of -60~+60 mV. A substate was observed at 55% of the main-state. The permeability ratio of Cl- to K+ (PCl/PK) was ~0.5 and PNa/PK was 0.81 in both states. Another type of cation channel was recorded in 7.5% of channels incorporated (n=7) and discriminated from the large-conductance cation channel by its smaller conductance (55.3 pS). Its Po was low at all voltages tested (~0.1). The third type was an anion channel recorded in 27.9% of channels incorporated (n=26). Its conductance was 39.0 pS and PCl/PK was 8.6±0.8. Po was ~1.0 at all tested potentials. In summary, we identified 2 types of cation and 1 type of anion channels in Ascaris suum. Gating of these channels did not much vary with voltage and their ionic selectivity is rather low. Their molecular nature, functions, and potentials as anthelmintic drug targets remain to be studied further.

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon;Son, Baegmo;Kam, Byungmin;Joh, Yong Sang;Park, Sangjoon;Lee, Won-Jun;Jung, Jongwan;Cho, Seongjae
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.829-837
    • /
    • 2019
  • The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.

Fractional Frequency Reuse with Sub-channel Borrowing (부분적 주파수 재사용의 성능 향상을 위한 sub-channel 차용 기법)

  • An, Jong-Wook;Cho, Seung-Moo;Lee, Tae-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.259-260
    • /
    • 2008
  • This paper presents fractional frequency reuse (FFR) with sub-channel borrowing to improve spectral efficiency of the wireless broadband (WiBro) system. FFR has constraints on usable sub-channels to balance the interference and cell capacity. Our FFR with sub-channel borrowing allows use of the dedicated sub-channels assigned to neighboring cells. Simulation results show that the proposed FFR with sub-channel borrowing improves the performance of the WiBro system.

  • PDF

Improving the Reliability by Straight Channel of As2Se3-based Resistive Random Access Memory (As2Se3 기반 Resistive Random Access Memory의 채널 직선화를 통한 신뢰성 향상)

  • Nam, Ki-Hyun;Kim, Chung-Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.327-331
    • /
    • 2016
  • Resistive random access memory (ReRAM) of metallic conduction channel mechanism is based on the electrochemical control of metal in solid electrolyte thin film. Amorphous chalcogenide materials have the solid electrolyte characteristic and optical reactivity at the same time. The optical reactivity has been used to improve the memory switching characteristics of the amorphous $As_2Se_3$-based ReRAM. This study focuses on the formation of holographic lattices patterns in the amorphous $As_2Se_3$ thin film for straight conductive channel. The optical parameters of amorphous $As_2Se_3$ thin film which is a refractive index and extinction coefficient was taken by n&k thin film analyzer. He-Cd laser (wavelength: 325 nm) was selected based on these basic optical parameters. The straighten conduction channel was formed by holographic lithography method using He-Cd laser.$ Ag^+$ ions that photo-diffused periodically by holographic lithography method will be the role of straight channel patterns. The fabricated ReRAM operated more less voltage and indicated better reliability.

A Channel Estimation Scheme for OFDM receiver in a Fast Mobile SFN Channel (고속 이동 SFN 채널에서 OFDM 수신기의 채널 추정 방법)

  • Gu, Young Mo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.552-561
    • /
    • 2016
  • In OFDM system, frequency-domain sub-carriers of a symbol generally consist of data sub-carriers and scattered pilot sub-carriers and in the receiver, channel is estimated through time-axis interpolating pilot sub-carriers of several OFDM symbols. However, time-axis interpolation fails to keep track of rapid channel variation caused by fast moving receiver. Although symbol by symbol channel estimation without time-axis interpolation enables fast estimation, the performance is severely degraded for a long delay spread channel in a single frequency networks (SFNs) because of insufficient pilot sub-carriers. In this paper, a channel estimation scheme for OFDM receiver in a fast mobile SFN channel is proposed. The proposed scheme is applied to DVB-T receiver to improve the Doppler mobile performance in SFN channel.

The Analysis of Threshold Voltage Shift for Tapered O/N/O and O/N/F Structures in 3D NAND Flash Memory (3D NAND Flash Memory에서 Tapering된 O/N/O 및 O/N/F 구조의 Threshold Voltage 변화 분석)

  • Jihwan Lee;Jaewoo Lee;Myounggon Kang
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.110-115
    • /
    • 2024
  • This paper analyzed the Vth (Threshold Voltage) variations in 3D NAND Flash memory with tapered O/N/O (Oxide/Nitride/Oxide) structure and O/N/F (Oxide/Nitride/Ferroelectric) structure, where the blocking oxide is replaced by ferroelectric material. With a tapering angle of 0°, the O/N/F structure exhibits lower resistance compared to the O/N/O structure, resulting in reduced Vth variations in both the upper and lower regions of the WL (Word Line). Tapered 3D NAND Flash memory shows a decrease in channel area and an increase in channel resistance as it moves from the upper to the lower WL. Consequently, as the tapering angle increases, the Vth decreases in the upper WL and increases in the lower WL. The tapered O/N/F structure, influenced by Vfe proportional to the channel radius, leads to a greater reduction in Vth in the upper WL compared to the O/N/O structure. Additionally, the lower WL in the O/N/F structure experiences a greater increase in Vth compared to the O/N/O structure, resulting in larger Vth variations with increasing tapering angles.

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

Ethanol inhibits Kv7.2/7.3 channel open probability by reducing the PI(4,5)P2 sensitivity of Kv7.2 subunit

  • Kim, Kwon-Woo;Suh, Byung-Chang
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.311-316
    • /
    • 2021
  • Ethanol often causes critical health problems by altering the neuronal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels.

L1 norm-recursive least squares algorithm for the robust sparse acoustic communication channel estimation (희소성 음향 통신 채널 추정 견실화를 위한 백색화를 적용한 l1놈-RLS 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Kim, Sungil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.32-37
    • /
    • 2020
  • This paper proposes a new l1-norm-Recursive Least Squares (RLS) algorithm which is numerically more robust than the conventional l1-norm-RLS. The l1-norm-RLS was proposed by Eksioglu and Tanc in order to estimate the sparse acoustic channel. However the algorithm has numerical instability in the inverse matrix calculation. In this paper, we propose a new algorithm which is robust against the numerical instability. We show that the proposed method improves stability under several numerically erroneous situations.