• Title/Summary/Keyword: structure of crystal grains

Search Result 74, Processing Time 0.033 seconds

Effect of Oxygen Annealing on the Structural and Optical Properties of Sputter-deposited Vanadium Oxide Thin Films (스퍼터링으로 퇴적시킨 바나듐 산화막의 구조적, 광학적 특성에 미치는 산소 어닐링의 효과)

  • 최복길;최창규;김성진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1003-1010
    • /
    • 2000
  • Thin films of vanadium oxide(VOx) have been deposited by r.f. magnetron sputtering from V$_2$O$\_$5/ target in gas mixture of argon and oxygen. Crystal structure, surface morphology, chemical composition, molecular structure and optical properites of films in-situ annealed in O$_2$ambient with various heat-treatment conditions are characterized through XRD, SEM, AES, RBS, RTIR and optical absorption measurements. The films annealed below 200$\^{C}$ are amorphous, and those annealed above 300$\^{C}$ are polycrystalline. The growth of grains and the transition of vanadium oxide into the higher oxide have been observed with increasing the annealing temperature and time. The increase of O/V ratio with increasing the annealing temperature and time is attributed to the diffusion of oxygen and the partial filling of oxygen vacancies. It is observed that the oxygen atoms located on the V-O plane of V$_2$O$\_$5/ layer participate more readily in the oxidation process. Also indirect and direct optical band gaps were increased with increasing the annealing temperature and time.

  • PDF

Effects of Eu3+ Concentration on the Photoluminescence Properties of Red-orange Phosphor Gd1-xPO4:Eux3+ (Eu3+ 농도가 적주황색 형광체 Gd1-xPO4:Eux3+의 발광 특성에 미치는 영향)

  • Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.611-616
    • /
    • 2011
  • Red-orange phosphors $Gd_{1-x}PO_4:{Eu_x}^{3+}$ (x = 0, 0.05, 0.10, 0.15, 0.20) were synthesized with changing the concentration of $Eu^{3+}$ ions using a solid-state reaction method. The crystal structures, surface morphology, and optical properties of the ceramic phosphors were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectrophotometry. The XRD results were in accordance with JCPDS (32-0386), and the crystal structures of all the red-orange phosphors were found to be a monoclinic system. The SEM results showed that the size of grains increases and then decreases as the concentration of $Eu^{3+}$ ionincreases. As for the PL properties, all of the ceramic phosphors, irrespective of $Eu^{3+}$ ion concentration, had orange and red emissions peaks at 594 nm and 613 nm, respectively. The maximum excitation and emission spectra were observed at 0.10 mol of $Eu^{3+}$ ion concentration, just like the grain size. An orange color stronger than the red means that $^5D_0{\rightarrow}^7F_1$ (magnetic dipole transition) is dominant over the $^5D_0{\rightarrow}^7F_2$ (electric dipole transition), and $Eu^{3+}$ is located at the center of the inversion symmetry. These properties contrasted with those of a red phosphor $Y_{1-x}PO_4:{Eu_x}^{3+}$, which has a tetragonal system. Therefore, we confirm that the crystal structure of the host material has a major effect on the resulting color.

Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide

  • Hossain, Md Delowar;Mustafa, Chand Mohammad;Islam, Md Mayeedul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2017
  • Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Synthesis and Photoluminescence Properties of Dy3+- and Eu3+-codoped CaMoO4 Phosphors (Dy3+와 Eu3+ 이온이 동시 도핑된 CaMoO4 형광체의 합성과 발광 특성)

  • Kim, Junhan;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.82-86
    • /
    • 2015
  • $Dy^{3+}$- and $Eu^{3+}$-codoped $CaMoO_4$ Phosphors were synthesized by using the solid-state reaction method. The crystal structure, morphology, and optical properties of the resulting phosphor particles were investigated by using the X-ray diffraction, field-emission scanning electron microscopy, and photoluminescence spectroscopy. XRD patterns exhibited that all the synthesized phosphors showed a tetragonal system with a main (112) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. As the content of $Eu^{3+}$ ions increased, the grains showed a tendency to agglomerate. The excitation spectra of the synthesized powders were composed of one strong broad band centered at 305 nm in the range of 220 - 350 nm and several weak peaks in the range of 350 - 500 nm resulting from the 4f transitions of activator ions. Upon ultraviolet excitation at 305 nm, the yellow emission line due to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions and the main red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. With the increase of the content of $Eu^{3+}$, the intensity of the yellow emission band gradually decreased while that of the red emission increased. These results indicated that the emission intensities of yellow and red emissions could be modulated by changing the content of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the host crystal.

Physical correlation between annealing process and crystal structure and magneto-resistance of Bismuth thin films (열처리 공정과 비스무스 박막의 결정구조 및 자기저항 특성변화와의 물리적 관계)

  • Jang, Seok Woo;Seo, Young-Ho;An, Ho-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.638-642
    • /
    • 2014
  • In this study, we investigate on the crystal microstructure and magneto-resistance (MR) change of Bismuth(Bi) thin films for annealing process, in order to apply Bi thin films to the spin electronic devices. As-prepared Bi thin films show the randomly oriented find grains whose size was measured to about 100 nm and the very low MR (4.7 % at room temperature) while careful annealing results in not only grain growth up to ${\sim}2{\mu}m$ but also drastic MR improvement (404 % at room temperature). The drastic change in the MR after applying the annealing process is attributed to the grain growth decreasing grain boundary scattering of electron. Therefore, in this study, we confirm the annealing effect for the grain boundary formation and MR improvement of Bi thin films, and demonstrate the feasibility of spin electronic devices.

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF

Effect of Reduction Temperature on the Microstructure and Thermoelectric Properties of TAGS-85 Compounds

  • Madavali, Babu;Han, Seung-Tek;Shin, Dong-Won;Hong, Soon-Jik;Lee, Kap-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.438-444
    • /
    • 2017
  • In this work, the effects of hydrogen reduction on the microstructure and thermoelectric properties of $(GeTe)_{0.85}(AgSbTe_2)_{0.15}$ (TAGS-85) were studied by a combination of gas atomization and spark plasma sintering. The crystal structure and microstructure of TAGS-85 were characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The oxygen content of both powders and bulk samples were found to decrease with increasing reduction temperature. The grain size gradually increased with increasing reduction temperature due to adhesion of fine grains in a temperature range of 350 to $450^{\circ}C$. The electrical resistivity was found to increase with reduction temperature due to a decrease in carrier concentration. The Seebeck coefficient decreased with increasing reduction temperature and was in good agreement with the carrier concentration and carrier mobility. The maximum power factor, $3.3{\times}10^{-3}W/mK^2$, was measured for the non-reduction bulk TAGS-85 at $450^{\circ}C$.

The study of ${\mu}c-Si/CaF_2$/glass properties for thin film transistor application (박막트랜지스터 응용을 위한 ${\mu}c-Si/CaF_2$/glass 구조특성연구)

  • Kim, Do-Young;Ahn, Byeung-Jae;Lim, Dong-Gun;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper covers our efforts to improve the low carrier mobility and light instability of hydrogenated amorphous silicon (a-Si:H) films with microcrystalline silicon $({\mu}c-Si)$ films. We successfully prepared ${\mu}c-Si$ films on $CaF_2$/glass substrate by decomposition of $SiH_4$ in RPCVD system. The $CaF_2$ films on glass served as a seed layer for ${\mu}c-Si$ film growth. The XRD analysis on $CaF_2$/glass illustrated a (111) preferred $CaF_2$ grains with the lattice mismatch less than 5 % of Si. We achieved ${\mu}c-Si$ films with a crystalline volume fraction of 61 %, (111) and (220) crystal orientations. grain size of $706\AA$, activation energy of 0.49 eV, and Photo/dark conductivity ratio of 124. By using a $CaF_2$/glass structure. we were able to achieve an improved ${\mu}c-Si$ films at a low substrate temperature of $300^{\circ}C$.

  • PDF

Nanostructural Study of Apatite Film Biomimetically Grown in SBF (Simulated Body Fluid) (생체유사환경에서 성장된 아파타이트 층의 나노구조 연구)

  • Kim, Joung;Lee, Kap-Ho;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.690-696
    • /
    • 2005
  • The ultrastructure ore of a nanostructured apatite film nucleated from solution was studied to gain insights into that of bone minerals which is the most important constituent to sustain the strength of bones. Needle-shaped apatite crystal plates with a bimodal size distribution $(\~100\;to\;\~1000 nm)$ were randomly distributed and they were found to grow parallel to the c-axis ([002]), driven by the reduction of surface energy. Between these randomly distributed needle-shaped apatite crystals which are parallel to the film, apatite crystals (20-40nm) with the normal of the grains quasi-perpendicular to the c-axis were observed. These observations suggest that the apatite film is the interwoven structure of apatite crystals with the c-axis parallel and quasi-perpendicular to the fan. In some regions, amorphous calcium phosphate, which is a precursor of apatite, was also observed. In the amorphous phase, small crystalline particle with the size of 2-3 nm were observed. These particles were quite similar, in size and shape, to those observed in the femoral trabecular bone, suggesting the nucleation of apatites by a biomimetic process in vitro is similar to that in vivo.