Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.3.197

Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide  

Hossain, Md Delowar (Departmentof Applied Chemistry and Chemical Engineering, University of Rajshahi)
Mustafa, Chand Mohammad (Departmentof Applied Chemistry and Chemical Engineering, University of Rajshahi)
Islam, Md Mayeedul (Department of Chemistry, Rajshahi University of Engineering and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.3, 2017 , pp. 197-205 More about this Journal
Abstract
Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.
Keywords
Lead dioxide; Electrodeposition; Current efficiency; Charge-discharge density; Charge efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Linden, T. B. Reddy, Handbook of Batteries, 3rd edn., McGraw-Hill, New York, 2001.
2 K. Das, A. Mondal, J. Power Sources, 1995, 55(2), 251-254.   DOI
3 K. Das, A. Mondal, J. Power Sources, 2000, 89(1), 112-116.   DOI
4 T. Mahalingam, S. Velumani, M. Raja, S. Thanikaikarasan, J. P. Chu, S. F. Wang, Y. D. Kim, Mater. Charact., 2007, 58(8), 817-822.   DOI
5 J. P. Carr, N. A. Hampson, Chem. Rev., 1972, 72(6), 679-702.   DOI
6 A. Czerwinski, M. Zelazowska, J. Power sources, 1997, 64(1), 29-34.   DOI
7 D. R. P. Egan, C. T. J. Low, F. C. Walsh, J. Power Sources, 2011, 196(13), 5725-5730.   DOI
8 P. Ruetschi, J. Electrochem. Soc., 1992, 139(5), 1347-1351.   DOI
9 J. Feng, D. C. Johnson, J. Appl. Electrochem., 1990, 20(1), 116-124.   DOI
10 N. A. Hampson, P. C. Jones, R. F. Phillips, Canad. J. Chem., 1969, 47(12), 2171-2179.   DOI
11 J. Lee, H. Varela, S. Uhm, Y. Tak, Electrochem. Commun., 2000, 2(9), 646-652.   DOI
12 P. K. Shen, X. L. Wei, Electrochim. Acta, 2003, 48(12), 1743-1747.   DOI
13 M. Taguchi, H. Sugita, J. Power Sources, 2002, 109(2), 294-300.   DOI
14 M. R. F. Hurtado, P. T. A. Sumodjo, A. V. Benedetti, Electrochim. Acta, 2003, 48(19), 2791-2798.   DOI
15 C. T. J. Low, D. Pletcher, F. C. Walsh, Electrochem. Commun., 2009, 11(6), 1301-1304.   DOI
16 I. Sires, C. T. J. Low, C. Ponce-de-Leon, F. C. Walsh, Electrochim. Acta, 2010, 55(6), 2163-2172.   DOI
17 I. Sires, C. T. J. Low, C. Ponce-de-Leon, F. C. Walsh, Electrochem. Commun., 2010, 12(1), 70-74.   DOI
18 W. Mindt, J. Electrochem. Soc., 1969, 116(8), 1076-1078.   DOI
19 P. Ruetschi, J. Sklarchuk, R. T. Angstadt, Electrochim. Acta, 1963, 8(5), 333-342.   DOI
20 B. Rezaei, M. Taki, J. Solid State Electrochem., 2008, 12(12), 1663-1671.   DOI
21 C. A. Melendres, M. Pankuch, J. Electroanal. Chem., 1992, 333(1), 103-113.   DOI
22 M. Wherens-Dijksma, P. H. L. Notten, Electrochim. Acta, 2006, 51(18) 3609-3621.   DOI
23 C. Daniel, J. O. Besenhard, D. Berndt, Handbook of Battery Materials, 2nd edn., Wiley-VCH Veriag GmbH & Co., VGaA, 2011, 190
24 M. Panizza, G. Cerisola, Electrochim. Acta, 2003, 48, 3491-3497.   DOI
25 H. Bode, Lead-Acid Batteries, Wiley and Sons, New York, 1977
26 B. Culpin, D. Rand, J. Power Sources, 1991, 36(4), 415-438.   DOI
27 A. F. Hollenkamp, J. Power Sources, 1996, 59(1-2), 87-98.   DOI
28 Y-II. Jang, N. J. Dudney, T. N. Tiegs, J. W. Klett, J. Power Sources, 2006, 161(2), 1392-1399.   DOI
29 S. Ai, Q. Wang, H. Li, L. Jin, J. Electroanal. Chem., 2005, 578(2), 223-229.   DOI
30 A. Eftkhari, Sens. Actuators B, 2003, 88(3), 234-238.   DOI
31 S. Stucki, G. Theis, R. Kötz, H. Devantay, H. J. Christen, J. Electrochem. Soc., 1985, 132(2), 367-371.   DOI
32 R. Amadelli, L. Armelao, A. B. Velichenko, N. V. Nikolenko, D. V. Grienko, S. V. Kovalyov, F. I. Danilov, Electrochim. Acta, 1999, 45(4), 713-720.   DOI
33 K. Kinoshita, Electrochemical oxygen technology, John Wiley & Sons, New York, 1992.
34 D. Devilliers, M. T. Dinh Thi, E. Mahe, Q. Le Xuan, Electrochim. Acta, 2003, 48(28), 4301-4309.   DOI
35 D. C. Johnson, J. Feng, L. L. Houk, Electrochim. Acta, 2000, 46(2), 323-330.   DOI
36 S. P. Tong, C. A. Ma, H. Feng, Electrochim. Acta, 2008, 53(6), 3002-3006.   DOI
37 J. C. Forti, A. R. De Andrade, J. Electrochem. Soc., 2007, 154(1), E19-E24.   DOI