Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.8.438

Effect of Reduction Temperature on the Microstructure and Thermoelectric Properties of TAGS-85 Compounds  

Madavali, Babu (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
Han, Seung-Tek (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
Shin, Dong-Won (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
Hong, Soon-Jik (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
Lee, Kap-Ho (Department of Materials Science & Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.27, no.8, 2017 , pp. 438-444 More about this Journal
Abstract
In this work, the effects of hydrogen reduction on the microstructure and thermoelectric properties of $(GeTe)_{0.85}(AgSbTe_2)_{0.15}$ (TAGS-85) were studied by a combination of gas atomization and spark plasma sintering. The crystal structure and microstructure of TAGS-85 were characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The oxygen content of both powders and bulk samples were found to decrease with increasing reduction temperature. The grain size gradually increased with increasing reduction temperature due to adhesion of fine grains in a temperature range of 350 to $450^{\circ}C$. The electrical resistivity was found to increase with reduction temperature due to a decrease in carrier concentration. The Seebeck coefficient decreased with increasing reduction temperature and was in good agreement with the carrier concentration and carrier mobility. The maximum power factor, $3.3{\times}10^{-3}W/mK^2$, was measured for the non-reduction bulk TAGS-85 at $450^{\circ}C$.
Keywords
thermoelectric materials; hydrogen reduction; gas atomization; spark plasma sintering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. M. Tritt, Science, 283, 804 (1999).   DOI
2 T. M. Tritt, H. Bottner and L. D. Chen, MRS Bull., 33, 366 (2008).   DOI
3 K. S. Lee, S. Seo, S. Jin, B. Y. Yoo and Y. K. Jeong, Korean J. Mater. Res., 22, 6 (2012).
4 J.-C. Choi, S.-H. Chang, Y.-H. Cha and I.-H. Oh, Korean J. Mater. Res., 18, 357 (2008).   DOI
5 R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, Nature, 413, 597 (2001).   DOI
6 B. Zhang, X. Ji, J. He and T. M. Tritt, Appl. Phys. Lett., 89, 163114 (2006).   DOI
7 H. S. Kim, P. Dharmaiah, B. Madavali, R. Ott, K. H. Lee and S. J. Hong, Acta Mater., 128, 53 (2017).
8 B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens and J. R. Thompson, Phys. Rev. B, 56, 15081 (1997).   DOI
9 S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang and X. B. Zhao, Nanotechnology., 19, 245707 (2008).   DOI
10 Y. Chen, T. J. Zhu, S. H. Yang, S. N. Zhang, W. Miao and V. B. Zhao, J. Electron. Mater., 39, 1719 (2010).   DOI
11 X. A. Fan, J. Y. Yang, R. G. Chen, H. S. Yun, W. Zhu, S. Q. Bao and X. K. Duan, J. Phys.D: Appl. Phys., 39, 740 (2006).   DOI
12 M. H. Bhuiyan, T. S. Kim, J. M. Koo and S. J. Hong, J. Alloys Compd., 590, 1722 (2011).
13 B. S. Kim, I. H. Kim, J. K. Lee, B. K. Min, M. W. Oh, S. D. Park, H. W. Lee and M. H. Kim, Electron. Mater. Lett., 6, 181 (2012).
14 B. A. Cook, J. L. Harrinja, S. H. Han and B. J. Beaudry, J. Appl. Phys., 72, 1423 (1992).   DOI
15 S. J. Hong and B. S. Chun, Mater. Sci. Eng. A, 356, 345 (2003).   DOI