• 제목/요약/키워드: structural recycling

검색결과 161건 처리시간 0.032초

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Rheological, physico-mechanical and durability properties of multi-recycled concrete

  • Rahmani, Abdessamed Azzaz;Chemrouk, Mohamed;Ammar-Boudjelal, Amina
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.9-22
    • /
    • 2020
  • The present work looks at the possibilities of recycling more than once demolished concrete as coarse aggregates, to produce new concrete. Different concrete mixes were made with substitutions of 50%, 75% and 100% of recycled concrete aggregates respectively as coarse aggregates. The physico-mechanical characterization tests carried out on the recycled concrete aggregates revealed that they are suitable for use in obtaining a structural concrete. The resulting concrete materials had rheological parameters, compressive strengths and tensile strengths very slightly lower than those of the original concrete even when 100% of two cycles recycled concrete aggregates were used. The durability of the recycled aggregates concrete was assessed through water permeability, water absorption and chemical attacks. The obtained concretes were thought fit for use as structural materials. A linear regression was developed between the strength of the material and the number of cycles of concrete recycling to anticipate the strength of the recycled aggregates concrete. From the results, it appear clear that recycling demolished concrete represents a valuable resource for aggregates supply to the concrete industry and a the same time plays a key role in meeting the challenge for a sustainable development.

중고 데님 의류의 구조 변형을 통한 업사이클링 디자인 개발 -Liu Qing의 구조 변형법 적용을 중심으로- (Development of Upcycling Design Through Structural Transformation of Used Denim Clothing -Centered Around Liu Qing's Methodology of Structural Transformation-)

  • 이소방;이영재
    • 패션비즈니스
    • /
    • 제28권1호
    • /
    • pp.1-19
    • /
    • 2024
  • This study explores application of upcycling design methods in structural transformation of second-hand denim clothing, aiming to achieve sustainable design objectives. By drawing inspiration from Liu Qing's research methods in the field of circular utilization of denim clothing, this study collected and analyzed cases of structural transformation of used denim clothing from 2020 to 2023. It summarized structural transformation design methods for used denim clothing. Through the development of design works, this study aims to find out the best upgrading and renovation design strategy by applying the method of structural renovation design. This study aims to support the development of a sustainable fashion industry and promote recycling and upcycling of discarded clothing fabrics, thereby reducing resource waste and environmental impact.

윤리적 소비 가치관이 환경친화적 태도와 행동의도(재활용, 재사용, 감량화)에 미치는 영향 (The Impact of Ethical Values on Eco-friendly Attitudes and Behavioral Intentions (Recycling, Reusing, Reducing))

  • 송현정;이수형;문선정
    • 한국환경과학회지
    • /
    • 제25권12호
    • /
    • pp.1643-1651
    • /
    • 2016
  • It is important to understand consumer attitudes associated with their eco-friendly behavior on account of not only environmental reasons, but also corporate aspects. In this study, we examine the relations between variables influencing eco-friendly attitudes and eco-friendly behavioral intentions, namely, recycling, reusing, and reducing (3R). We first, performed a theoretical consideration through reviews of literature on ethical identity, ethical obligation, altruism, and eco-friendly attitudes, and behavioral intentions. Based on the literature review, we designed a study model and drew hypotheses. Further, we collected data using a survey and processed them statistically in order to verify the hypotheses. A total of 265 samples were collected and the data were analyzed using a structural equation model (-LISREL 8.70). The results suggest that ethical identity and altruism significantly influence environmental attitudes. However, the effects of ethical obligations on eco-friendly attitudes are insignificant. The environmental attitudes have a significant effects on the consumer behavioral intention for recycling, reusing, and reducing. Although this study has some limitations, it is expected that it will positively trigger follow-up research.

재활용을 고려한 금속-열가소성 복합재료 하이브리드 접착 구조의 분리 기술 개발 (Development of Separation Technology for Adhesively Bonded Hybrid Structures of Metals and Thermoplastic Composites Considering Recycling)

  • 한수호;황희윤;배민관;박상언;장홍규
    • Composites Research
    • /
    • 제31권4호
    • /
    • pp.128-132
    • /
    • 2018
  • 최근 들어 금속과 복합재료를 혼합하여 자동차 부품을 제작함으로써 구조의 기능성을 만족하면서도 무게를 줄이고자 하는 연구가 진행되고 있다. 환경문제로 인해 전기전자제품 및 자동차의 재활용 규제가 강화되고 있음을 고려하여, 자동차 재활용 업체 관계자의 설문을 통하여 금속과 복합재료 하이브리드 구조의 재활용율 향상을 위한 요소 기술을 도출하였다. 필요한 요소 기술 중 기술적으로 해결할 수 있는 금속-복합재료 하이브리드 접착 구조의 분리 기술에 대한 기초 연구를 진행하였으며, 재활용 현장에서 쉽게 도입할 수 있는 분리 기법을 제안하였다.

Vascular Endothelial Cadherin-mediated Cell-cell Adhesion Regulated by a Small GTPase, Rap1

  • Fukuhra, Shigetomo;Sakurai, Atsuko;Yamagishi, Akiko;Sako, Keisuke;Mochizuki, Naoki
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.132-139
    • /
    • 2006
  • Vascular endothelial cadherin (VE-cadherin), which belongs to the classical cadherin family, is localized at adherens junctions exclusively in vascular endothelial cells. Biochemical and biomechanical cues regulate the VE-cadherin adhesive potential by triggering the intracellular signals. VE-cadherin-mediated cell adhesion is required for cell survival and endothelial cell deadhesion is required for vascular development. It is therefore crucial to understand how VE-cadherin-based cell adhesion is controlled. This review summarizes the inter-endothelial cell adhesions and introduces our recent advance in Rap1-regulated VE-cadherin adhesion. A further analysis of the VE-cadherin recycling system will aid the understanding of cell adhesion/deadhesion mechanisms mediated by VE-cadherin in response to extracellular stimuli during development and angiogenesis.

COLLAPSE CHARACTERISTICS OF ALUMINUM EXTRUSIONS FILLED WITH STRUCTURAL FOAM FOR SPACE FRAME VEHICLES

  • Kim, B.J.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.141-147
    • /
    • 2003
  • For improving high-safety, convenience, and ride comfort, the automotive design suffers from radical increase of the weight, the recycling-related rules, regulations on the waste gas, and environmental protection of the resources. Among them, it is well known that the weight increase is the most critical. Thus, in order to minimize the weight of the body-in-white that takes up 20-30% of the whole weight of the automobile, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using aluminum space frames. In this research, the crush test and simulation for aluminum extrusions are performed to evaluate the collapse characteristics of that light weighted material. Also. the same test and simulation was done for aluminum extrusions filled with structural foam. Then, these results are analyzed and compared. From these studies, the effectiveness of structural foam is evaluated in improving automotive crashworthiness. Finally, the design strategy and guideline of the structural form are suggested in order to improve the crashworthiness for aluminum space frame in the vehicle.

LED용 precursor 재이용을 위한 회수 및 정제 공정 개발 (Development of Reuse Process Through Recovery and Refinement of Precursor for LED)

  • 양재열;오병성;윤재식
    • 자원리싸이클링
    • /
    • 제23권1호
    • /
    • pp.25-32
    • /
    • 2014
  • 본 연구에서는 metal organic chemical vapor deposition(유기금속화학증기증착, MOCVD) 장치로 부터 LED용 GaN epi 성장 시원료로 사용되는 트리메틸갈륨에 대해서 사용 후 잔량을 회수하고 정제하여 재이용할 수 있는 공정 및 시스템을 개발하고자 한다. 본 공정에서 회수된 트리메틸갈륨에 대해서 화학적, 구조적 특성 평가를 통해서 재이용 가능여부를 검토하였다. 먼저 ICP-MS, ICPAES를 이용하여 순도를 분석한 결과 7N(99.99999%)의 고순도 트리메틸갈륨임을 확인했으며, NMR 분석을 통해서 트리메틸갈륨의 구조적 변화를 확인한 결과, 구조 변화 없이 순수 $(CH_3)_3Ga$(트리메틸갈륨) 구조임을 확인하였다. 또한 회수 트리메틸갈륨에 대한 신뢰성 검토를 위해서 MOCVD 공정을 이용하여 u-GaN를 증착시키고, 결정 특성 평가 및 광학 전기적 특성 평가를 실시하였으며 그 결과, 재이용이 가능함을 알 수 있었다.

TPU 재질을 적용한 다목적 고액분리 모듈의 여과판 구조해석 (Structural Analysis of TPU Membrane Plate in Multi-purpose Module for Solid-liquid Separation)

  • 정희숙;오두영;고동신;송형운
    • 유기물자원화
    • /
    • 제25권1호
    • /
    • pp.5-13
    • /
    • 2017
  • 기존 국내 여과판의 재질은 주로 polypropylene 소재의 여과판을 사용하였으며 그 이유는 성형성이 좋고, 가격이 저렴하며 매우 보편적으로 보급된 소재이기 때문이다. 그러나 고압에 의해 한번 뒤틀려진 polypropylene 소재 여과판은 재사용이 어려우며 가압형 고액분리모듈의 연속 운전에 문제를 야기할 수 있다. 따라서 기존 polypropylene 소재보다 성능이 뛰어난 TPU(Thermoplastic Poly Urethane) 소재개발을 위해 새로운 소재에 대해 설계된 여과판의 구조적 안정성을 해석적 기법을 통해 예측하였다. 20 bar의 압력하중 하에서 TPU를 적용한 여과판은 최대 변형량이 27.85 MPa로 나타났으며 이 값은 TPU 응력-변형률(Stress-Strain) 한계치 이하 값으로 여과판 재질에 대한 구조적 안정성을 확보하였다.

MOCVD 공정 중 발생한 GaN 분말 scrap에 대한 대기 산화가 결정조직과 미세조직에 미치는 영향 (Influence of Oxidation Temperatures on the Structure and the Microstructure of GaN MOCVD Scraps)

  • 홍현선;안중우
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.278-282
    • /
    • 2015
  • The GaN-powder scrap generated in the manufacturing process of LED contains significant amounts of gallium. This waste can be an important resource for gallium through recycling of scraps. In the present study, the influence of annealing temperatures on the structural properties of GaN powder was investigated when the waste was recycled through the mechanochemical oxidation process. The annealing temperature varied from $200^{\circ}C$ to $1100^{\circ}C$ and the changes in crystal structure and microstructure were studied. The annealed powder was characterized using various analytical tools such as TGA, XRD, SEM, and XRF. The results indicate that GaN structure was fully changed to $Ga_2O_3$ structure when annealed above $900^{\circ}C$ for 2 h. And, as the annealing temperature increased, crystallinity and particle size were enhanced. The increase in particle size of gallium oxide was possibly promoted by powder-sintering which merged particles to larger than 50 nm.