DOI QR코드

DOI QR Code

Development of Reuse Process Through Recovery and Refinement of Precursor for LED

LED용 precursor 재이용을 위한 회수 및 정제 공정 개발

  • Received : 2013.09.25
  • Accepted : 2014.01.03
  • Published : 2014.02.28

Abstract

The purpose of this research is to develop a process and a system to collect, purify and reuse the residual quantity of trimethylgallium, used as a raw material, upon GaN epitaxial growth for LED from a metal organic chemical vapor deposition(MOCVD) equipment. This research reviews whether TMGa collected from the process can be used through a chemical and structural characteristics evaluation. As a result of analyzing the purity using ICP-MS and ICP-AES, 7N high purity (99.99999%) of TMGa was obtained. According to checking the structural change of TMGa through NMR analysis, TMGa having pure $(CH_3)_3Ga$ structure was obtained without structural change. For reliability review of the collected TMGa, u-GaN was deposited using the MOCVD process and an structural, optical and electrical characteristics evaluation was conducted. As a result, it was found out that the reuse was possible.

본 연구에서는 metal organic chemical vapor deposition(유기금속화학증기증착, MOCVD) 장치로 부터 LED용 GaN epi 성장 시원료로 사용되는 트리메틸갈륨에 대해서 사용 후 잔량을 회수하고 정제하여 재이용할 수 있는 공정 및 시스템을 개발하고자 한다. 본 공정에서 회수된 트리메틸갈륨에 대해서 화학적, 구조적 특성 평가를 통해서 재이용 가능여부를 검토하였다. 먼저 ICP-MS, ICPAES를 이용하여 순도를 분석한 결과 7N(99.99999%)의 고순도 트리메틸갈륨임을 확인했으며, NMR 분석을 통해서 트리메틸갈륨의 구조적 변화를 확인한 결과, 구조 변화 없이 순수 $(CH_3)_3Ga$(트리메틸갈륨) 구조임을 확인하였다. 또한 회수 트리메틸갈륨에 대한 신뢰성 검토를 위해서 MOCVD 공정을 이용하여 u-GaN를 증착시키고, 결정 특성 평가 및 광학 전기적 특성 평가를 실시하였으며 그 결과, 재이용이 가능함을 알 수 있었다.

Keywords

References

  1. C.A. Kraus, F.E. Toonder, 1933: Trimetyl Gallium, Trimethyl Gallium Etherate and Trimetyl Gallium Ammine, proc. Acad. Sci., 19, 292-298.
  2. C.A. Kraus, F.E. Toonder, 1933: The Action of Sodium upon Trimethylgallium and Dimetylgallium chloride in Liquid Ammonia, J. Am. Chem. Soc., 55, 3547-3554. https://doi.org/10.1021/ja01336a009
  3. K.B. Starowieyski, A. Chwojnowski, K. Jankowski, J. Lewinski, J. Zachara, 2000: Synthesis and purification of trimethylgallium for MOCVD: molecular structure of (KF)4.4(Me3Ga), Appl. Organomet. Chem., 14, 616-622. https://doi.org/10.1002/1099-0739(200010)14:10<616::AID-AOC47>3.0.CO;2-T
  4. E. Wilberg, T. Johannsen, O. Strecher, 1943: Zur Kenntnis des Galliumtrimethyls, Z. Anorg, Allg. Chem., 251, 114-124 https://doi.org/10.1002/zaac.19432510111
  5. Z. Zhang, B. Huang, D. Cui, 2001: Growth of AlGaP in GaAs substrate by metalorganic vapor phase epitaxy, Mater. Sci. Eng. B., 86, 147-151. https://doi.org/10.1016/S0921-5107(01)00675-4
  6. T. Barfels, H.-J. Fitting, J. Jansons, A. Tale I, A. Veispals, A. Von Czarnowski, H. Wulff, 2001: Strucure and luminescence of GaN layers, Appl. Surf. Sci., 179, 191-195. https://doi.org/10.1016/S0169-4332(01)00278-1
  7. S. P. Watkins, T. Pinnington, J. Hu, P. Yeo, M. Kluth, N. J. Mason, R. J. Nicholas, P. J. Walker, 2000: Infrared single wavelength gas composition monitoring for metalorganic vapour-phase epitaxy, J. Cryst. Growth., 221, 166-171. https://doi.org/10.1016/S0022-0248(00)00680-1
  8. Z.-J. Liu, B. Atakan, K. Kohse-Hoinghaus, Katharina, 2000: Deposition of hexagonal GaN n-propylamine as a nitrogen precursor, J. Cryst. Growth., 219, 176-179. https://doi.org/10.1016/S0022-0248(00)00626-6
  9. H. U. Schwering, H. Olapinski, E. Jungk, J. Weidlein, 1974: Bis(dialkylmetall)quadratate der elemente aluminium, gallium und imdium, J. Organomet. Chem., 76, 315-324 https://doi.org/10.1016/S0022-328X(00)87378-7
  10. I. L. Wilson, K. Dehnicke, 1974: Trialkylgallium-halogeno -komplexe[R3GaX]− und [(R3Ga)2X]− mit X=F, Cl, Br, J. Organomet. Chem., 67, 229-235. https://doi.org/10.1016/S0022-328X(00)82349-9
  11. R. N. Grimes, W. J. Rademaker, M. L. Denniston, R. F. Bryan, P. T. Greene, 1972: Carboranes Containing Gallium and Indium Cage Heteroatoms, Synthesis, Molecular structure and Reactions, J. Am. Chem. Soc., 94, 1865-1869. https://doi.org/10.1021/ja00761a013
  12. Y. Y. Choi, C. W. Nam, Y. T. Yu, W. Y. Kim, 2005: Recovery of Gallium from GaAs Scraps by Thermal Decomposition, J. of Korean Inst. of Resources recycling, 14, 28-32
  13. S. G. Kim, H. Y. Lee, J. K. Oh, 2000: Recovery of Gallium from Zinc Residues by Solvent Extraction, J. of Korean Inst. of Resources recycling, 9, 29-36.
  14. J. G. Yang, S. S. Lee, J. H. Kim, Y. G. Hwang, 1993: Recovery of Gallium from Steelmaking Dust, J. of Korean Inst. of Resources recycling, 2, 27-32.
  15. Z. Cerny, J. Machacek, J. Fusek, O. Kriz and B. Casensky, 1993: Ga NMR studies of mixtures of gallium trichloride and trimethylgallium, J. Organomet. Chem., 456, 25-30. https://doi.org/10.1016/0022-328X(93)83311-I
  16. K. S. Kim, C. S. Oh, W. -H. Lee, K. J. Lee, G. M. Yang, C. -H. Hong, E. -K. Suh, K. Y. Lim, H. J. Lee, D. J. Byun, 2000: Comparative analysis of characteristics of Si, Mg, and undoped GaN, J. Cryst. Growth., 210, 505-510. https://doi.org/10.1016/S0022-0248(99)00739-3
  17. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, 1996: Excitonic emissions from hexagonal GaN epitaxial layers, J. Appl. Phys. 79, 2784-2786. https://doi.org/10.1063/1.361110
  18. J S Kim, D Y Lee, I H Bae, 2001: Growth of High quality Mg-doped GaAs by molecular beam epitaxy and Its properties, J. Kor. Phys. Soc. 39, S518-S521.
  19. V W L Cin, T L Tansley, T Osotchan, 1994: Electron mobilities in Gallium, indium, and aluminum nitrides, J. Appl. Phys. 75, 7365-7373. https://doi.org/10.1063/1.356650

Cited by

  1. Fabrication of High Purity Ga-containing Solution using MOCVD dust vol.24, pp.4, 2015, https://doi.org/10.7844/kirr.2015.24.4.50