• Title/Summary/Keyword: structural glulam

Search Result 36, Processing Time 0.019 seconds

Performance of Adhesives in Glulam after Short Term Fire Exposure

  • Quiquero, Hailey;Chorlton, Bronwyn;Gales, John
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.299-311
    • /
    • 2018
  • As engineered timber such as Glulam is seeing increasing use in tall timber buildings, building codes are adapting to allow for this. In order for this material to be used confidently and safely in one of these applications, there is a need to understand the effects that fire can have on an engineered timber structural member. The post-fire resilience aspect of glulam is studied herein. Two sets of experiments are performed to consider the validity of zero strength guidance with respect to short duration fire exposure on thin glulam members. Small scale samples were heated in a cone calorimeter to different fire severities. These samples illustrated significant strength loss but high variability despite controlled quantification of char layers. Large scale samples were heated locally using a controlled fuel fire in shear and moment locations along the length of the beam respectively. Additionally, reduced cross section samples were created by mechanically carving a way an area of cross section equal to the area lost to char on the heated beams. All of the samples were then loaded to failure in four-point (laterally restrained) bending tests. The beams that have been burnt in the shear region were observed as having a reduction in strength of up to 34.5% from the control beams. These test samples displayed relatively little variability, apart from beams that displayed material defects. The suite of testing indicated that zero strength guidance may be under conservative and may require increasing from 7 mm up to as much as 23 mm.

Visual Log Grading and Evaluation of Lamina Yield for Manufacturing Structural Glued Laminated Timber of Pitch Pine (리기다소나무 원목형질 조사 및 구조용집성재 제조 수율 평가)

  • Shim, Sangro;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Pitch pine (Pinus rigida) has been planted in Korean forests for several decades, primarily for erosion control and use as a fuel supply. To enhance its value, and especially potential use as lamina for structural glued laminated timber (glulam), log quality and lumber yield of pitch pine were evaluated in this study. Trees from pure pitch pine stands with an average diameter at breast height of 32 cm were felled and bucked into 3.6m long 15 cm minimum butt-end diameter logs. Over 80% of the logs were classified to No.2 or No.3 visual grade group. Upon sawing total lumber yield was 55.2%, 39.9% for structural glulam lamina, 7.2% for louver, and 8.1% for miscellaneous use. The final lumber yield for manufacturing structural glulam, after cross-cutting to eliminate knots and finger jointing, was only 15.3%. To enhance this manufacturing yield requires that the rate of knot-included lumber used as lamina be raised. However arrangement of the knot-included lamina, whose mechanical properties need to be accurately evaluated, must be optimized to minimize any reduction to the structural glulam strength. The log quality and lumber yield of pitch pine evaluated in this study are expected to facilitate proper planning for wood product manufacture in the Korean lumbering and glulam industrial field, which has not previously dealt with this species.

Numerical Simulation on Disproportionate Collapse of the Tall Glulam Building under Fire Conditions

  • Zhao, Xuan;Zhang, Binsheng;Kilpatrick, Tony;Sanderson, Iain
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.311-321
    • /
    • 2021
  • Perception of the public to structural fires is very important because there are only a number of tall timber buildings constructed in the world. People are hesitating to accept tall timber buildings, so it is essential to ensure the first generation of tall timber buildings to a very high standard, especially fire safety. Right now, there are no specific design standards or regulations for fire design of tall timber buildings in Europe. Even though heavy timber members have better fire resistance than steel components, many conditions still need to be verified before considering the use of timber materials, e.g. fire spread, post-fire collapse, etc. This research numerically explores the structural behaviours of a tall Glulam building when one of its internal Glulam (Glued laminated timber) columns fails after sustaining a full 120-min standard fire and is removed from the established finite element building model created in SAP2000. The numerical results demonstrate that the failure and removal of the selected internal Glulam column may lead to the local failure of the adjacent CLT (Cross laminated timber) floor slabs, but will not lead to large disproportionate damage and collapse of the whole building. Here, the building is assumed to be located in Glasgow, Scotland, UK.

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Development of Structural Glued Laminated Timber with Domestic Cedar (국산 삼나무를 이용한 구조용 집성재 이용기술)

  • Kim, Kwang-Mo;Shim, Sang-Ro;Shim, Kug-Bo;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • In the southern part of the Korean Peninsula including Jeju-island, the production amount of domestic cedar has increased gradually. However, their low qualities, expected to be caused by the low density and frequent knots, have restricted their practical utilization as the high value-added products. In this study, it is aimed to look for the new uses of domestic cedar and to examine the applicability for lamination lumbers of structural glued laminated timber (glulam). Above all, machine stress ratings for individual sawn lumbers confirmed that modulus of elasticity (MOE) of cedar lumber was lower than that of other common softwood species in Korea. On the other hand, cedar lumbers have enough stiffness to manufacture the structural glulam in accordance with Korean Industrial Standard (KS). The bonding strength and durability also met the KS limitation. Nevertheless, from the result of bending tests for cedar glulam, it was shown that the modulus of elasticity (MOE) did not meet the KS limitation. Therefore, it was concluded that additional researches were needed for reinforcing the stiffness of cedar glulam.

Study on the Improvement of Strength Capacity for Glulam-to-bolt Connection (집성재 볼트 결합부의 강도 성능 개선에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.31-37
    • /
    • 2005
  • This research investigated the increase in strength capacity for the difference of various connection conditions. Connections were constructed with a main member, glulam and side members, 3 mm steel plates. Connections were varied in the number of inserted 1 mm steel plate. The strength capacity considerably increased by inserting the very thin steel plate within structural glulam connection. Glulam connections were classified as the number of inserted steel plate, group A was none, group B was one, group C was two, and group D was three. Ultimate and design values of the group B were 18% and 13% greater than the group A, the group C were 27% and 20% than the group A, and the group D were 33% and 24% than the group A. However, the increase in strength capacity and the additional difficulty should be considered on economic and technical view.

Performance of Structural Glulam Manufactured with Fire Retardants Treated Lumbers (난연처리 제재목으로 제조한 구조용 집성재의 강도 성능평가)

  • Son, Dong-Won;Eom, Chang-Deuk;Park, Jun-Cheol;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.477-482
    • /
    • 2014
  • Consumer demand for wood use has diversified recently. Laminated wood has been used for large-scale buildings and public buildings, not only the durability but also the demand for fire safety has increased. In this study. it was performed for the purpose of developing a standard and flame-retardant treatment technology suitable for structural laminated wood, which was prepared in domestic larch. In this study, by using the domestic larch and Korean pine lumber which treated with flame-retardants, to manufacture the glulam, the effect of strength properties were investigated. In the case of fire retardant treated larch Glulam was satisfactory conditions of the strength of structural laminated wood, but had to be improved, such as the occurrence of delamination and decrease strength by the flame retardant treatment. Development of application-type flame retardant treatment technology or injection-type flame retardant treatment after production of laminated lumber were required.

An Experimental Study on Flexural Performance Evaluation of C-Shaped Steel-Timber Composite Beams (C형 강재-목재 합성보의 휨성능 평가에 관한 실험 연구)

  • Oh, Keunyeong;Lee, Sang-Sup;Park, Keum-Sung;Boo, Yoon-Seob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2024
  • In this study, the flexural strength and ductility of steel-timber composite beams were evaluated to enhance the structural performance of glued-laminated timber beams. Three specimens were fabricated, including one reference glulam beam and two composite beams. The composite beams were constructed by attaching steel sections to the glulam beam using either liquid adhesive or screws. The experimental results showed that the structural performance of the steel-timber composite beams was approximately 2-3 times higher than the reference glulam beam, indicating that both flexural strength and ductility were sufficiently ensured. Notably, the specimen constructed with liquid adhesive demonstrated superior structural performance compared to the screw-attached specimen.

Effects of Finger Joint and Strength of Lamination on the Estimation of Strength Properties of Glulam (집성재의 강도적 성질 예측에 대한 핑거 조인트와 라미나의 강도의 영향)

  • Kim, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.8-17
    • /
    • 2000
  • Structural glued laminated timbers were manufactured from Japanese larch(Larix leptolepis) lumber. The effect of various factors, such as finger joint, strength of lamination, on the strength properties of glulam was investigated. When only MOE of lamina was used as input variable for the estimation of strength properties of glulam, the deviations between actual and simulated results were increased with the number of lamination, because the effects of variance of lamina properties on the strength estimation of glulam were cumulated with the number of lamination. Therefore, to estimate the MOR of glulam more careful approach was needed. Besides, both MOE and MOR of lamination were used as input variable to compare the effect of input variable. In the case of finger jointed lamination was located in tension zone, MOE of glulam was some effected, because of the variation of MOE of lamination and the deficiency of information for knot. In the case of finger jointed lamination wasn't located in tension zone, more exact estimation was possible than the case of finger jointed lamination was located in tension zone. From the results, it was concluded that more exact estimation of strength properties of glulam could be obtained by considering effects of both finger joint and knot.

  • PDF

The Bending Strength and Adhesive Properties of PRF and MUF Glulam (PRF, MUF 집성재의 휨 강도와 접착 성능 평가)

  • Park Jun-Chul;Kim Keon-Ho;Hong Soon-Il
    • Journal of the Korea Furniture Society
    • /
    • v.15 no.2
    • /
    • pp.19-27
    • /
    • 2004
  • As glulam is a woody material, it is necessary to be more careful in a gluing process. It takes 6-7 hours at $40-60^{\circ}C$ to harden PRF resin used in making structural glulam, and about 24 hours at room temperature. In the present process which can not use a press continuously, reducing the hardening time is necessary to increase production. The experiment was done to compare the adhesive properties of PRF resin and MUF resin through bending test, block shear strength test and water soaking test. In comparing the bending strength of prediction MOE is 1.2 times higher that actual MOE. PRF and MUF do not show significant difference in MOE and MOR, and in block shear strength test, such as shear strength and wood failure rate. However, in water soaking and boiling water soaking tests PRF and MUF show the significant difference in delamination rate.

  • PDF