• Title/Summary/Keyword: strongly regular ring

Search Result 47, Processing Time 0.023 seconds

ON STRONGLY QUASI PRIMARY IDEALS

  • Koc, Suat;Tekir, Unsal;Ulucak, Gulsen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.729-743
    • /
    • 2019
  • In this paper, we introduce strongly quasi primary ideals which is an intermediate class of primary ideals and quasi primary ideals. Let R be a commutative ring with nonzero identity and Q a proper ideal of R. Then Q is called strongly quasi primary if $ab{\in}Q$ for $a,b{\in}R$ implies either $a^2{\in}Q$ or $b^n{\in}Q$ ($a^n{\in}Q$ or $b^2{\in}Q$) for some $n{\in}{\mathbb{N}}$. We give many properties of strongly quasi primary ideals and investigate the relations between strongly quasi primary ideals and other classical ideals such as primary, 2-prime and quasi primary ideals. Among other results, we give a characterization of divided rings in terms of strongly quasi primary ideals. Also, we construct a subgraph of ideal based zero divisor graph ${\Gamma}_I(R)$ and denote it by ${\Gamma}^*_I(R)$, where I is an ideal of R. We investigate the relations between ${\Gamma}^*_I(R)$ and ${\Gamma}_I(R)$. Further, we use strongly quasi primary ideals and ${\Gamma}^*_I(R)$ to characterize von Neumann regular rings.

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

ON DIFFERENT NOTIONS OF TRANSITIVITY FOR QTAG-MODULES

  • Sikander, Fahad;Hasan, Ayazul;Mehdi, Alveera
    • Honam Mathematical Journal
    • /
    • v.38 no.2
    • /
    • pp.259-267
    • /
    • 2016
  • A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. Recently, the authors introduced the classes of QTAG-modules namely as socle-regular and strongly socle-regular QTAG-modules which properly contain the classes of transitive and fully transitive QTAG-modules respectively. Here we define strongly and quasi transitivities and study the inter relations between various type of transitivities.

Weakly np-Injective Rings and Weakly C2 Rings

  • Wei, Junchao;Che, Jianhua
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.93-108
    • /
    • 2011
  • A ring R is called left weakly np- injective if for each non-nilpotent element a of R, there exists a positive integer n such that any left R- homomorphism from $Ra^n$ to R is right multiplication by an element of R. In this paper various properties of these rings are first developed, many extending known results such as every left or right module over a left weakly np- injective ring is divisible; R is left seft-injective if and only if R is left weakly np-injective and $_RR$ is weakly injective; R is strongly regular if and only if R is abelian left pp and left weakly np- injective. We next introduce the concepts of left weakly pp rings and left weakly C2 rings. In terms of these rings, we give some characterizations of (von Neumann) regular rings such as R is regular if and only if R is n- regular, left weakly pp and left weakly C2. Finally, the relations among left C2 rings, left weakly C2 rings and left GC2 rings are given.

ON A QUASI-POWER MODULE

  • PARK CHIN HONG;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.679-687
    • /
    • 2005
  • In this paper we shall give a new definition for a quasi-power module P(M) and discuss some properties for P(M). The quasi-power module P(M) is a direct sum of invertible quasi-submodules C(H)'s of P(M) and then the quasi-submodule C(H) is also a direct sum of strongly cyclic quasi-submodules of C(H). When M is a quasi-perfect right R-module, we shall see that the quasi-power module P(M) is invertible.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

STUDY ON CLEAN ORDERED RINGS DERIVED FROM CLEAN ORDERED KRASNER HYPERRINGS

  • Omidi, Saber;Davvaz, Bijan
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.115-125
    • /
    • 2018
  • In this paper, we introduce the notion of a clean ordered Krasner hyperring and investigate some properties of it. Now, let (R, +, ${\cdot}$, ${\leq}$) be a clean ordered Krasner hyperring. The following is a natural question to ask: Is there a strongly regular relation ${\sigma}$ on R for which $R/{\sigma}$ is a clean ordered ring? Our motivation to write the present paper is reply to the above question.