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STUDY ON CLEAN ORDERED RINGS DERIVED FROM CLEAN

ORDERED KRASNER HYPERRINGS

Saber Omidi a and Bijan Davvaz b, ∗

Abstract. In this paper, we introduce the notion of a clean ordered Krasner hy-
perring and investigate some properties of it. Now, let (R,+, ·,≤) be a clean ordered
Krasner hyperring. The following is a natural question to ask: Is there a strongly
regular relation σ on R for which R/σ is a clean ordered ring? Our motivation to
write the present paper is reply to the above question.

1. Introduction

The algebraic hyperstructure theory was first introduced by Marty [14] in 1934.

Algebraic hyperstructures are a suitable generalization of classical algebraic struc-

tures. In a classical algebraic structure, the composition of two elements is an

element, while in an algebraic hyperstructure, the composition of two elements is

a set. Several books have been written on this topic; here, we just mention the

books of Corsini and Leoreanu [5], Davvaz [6], Davvaz and Leoreanu-Fotea [7] and

Vougiouklis [21]. Marty introduced hypergroups as a generalization of groups. He

published some notes on hypergroups, using them in different contexts: algebraic

functions, rational fractions, non-commutative groups. The concept of an ordered

semihypergroup was first given by Heidari and Davvaz [12]. The concept of or-

dered semihypergroups is a generalization of the concept of ordered semigroups. In

2015, Davvaz, Corsini and Changphas [10] introduced the concept of a pseudoorder

relation in ordered semihypergroups. Using this notion, they obtained an ordered

semigroup from an ordered semihypergroup. The work on ordered semihypergroup

theory can be found in [10, 11, 17].

Let us introduce a background of our study. The notion of a clean ring was first
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introduced by Nicholson [15] in 1977. Later on, Anderson and Camillo studied clean

rings in more details in [3]. Let (R,+, ·) be a ring with 1. Then R is clean if every

a ∈ R can be written as a = u + e, where u is an invertible and e is idempotent.

There are different types of hyperrings. A well-known type of a hyperring, called

the Krasner hyperring [13]. Let (R,+, ·) be a commutative hyperring with identity

in the sense of Krasner. Following Amouzegar and Talebi [2], an element a of a

hyperring R is said to be clean if a ∈ u+ e, where u is an invertible and e is idem-

potent. If every element of R is clean, then R is called a clean hyperring. We invite

the readers to [1] to see more about the clean multiplicative hyperrings.

2. Basic Concepts

In this Section, we recall some notions that will be useful in the development of

the paper.

A Krasner hyperring [9, 13] is an algebraic hypersructure (R,+, ·) which satisfies

the following axioms:

(1) (R,+) is a canonical hypergroup, i.e., (i) for any x, y, z ∈ R, x + (y + z) =

(x+ y) + z, (ii) for any x, y ∈ R, x+ y = y + x, (iii) there exists 0 ∈ R such

that 0 + x = x + 0 = x, for any x ∈ R, (iv) for every x ∈ R, there exists a

unique element x′ ∈ R, such that 0 ∈ x + x′ (we shall write −x for x′ and

we call it the opposite of x), (v) z ∈ x + y implies that y ∈ −x + z and

x ∈ z − y, that is (R,+) is reversible;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e.,

x · 0 = 0 · x = 0;

(3) The multiplication is distributive with respect to the hyperoperation +.

A Krasner hyperring (R,+, ·) is called commutative if (R, ·) is a commutative

semigroup. A Krasner hyperring R is called with identity if there exists an element,

say 1 ∈ R, such that 1 · x = x · 1 = x. An element x of a Krasner hyperring R is

called a unit if there exists y ∈ R such that x · y = y · x = 1. For the definitions

of subhyperring and hyperideal of a Krasner hyperring, we refer to Section 2 of the

paper [9] by Davvaz and Salasi.

Let σ be an equivalence relation on a Krasner hyperring (R,+, ·). If A and B

are non-empty subsets of R, then AσB means that for all a ∈ A and for all b ∈ B,

we have aσb. An equivalence relation σ on R is said to be strongly regular if for all

a, b, x ∈ R, we have (i) aσb ⇒ (a+x)σ(b+x); (ii) aσb ⇒ (a·x)σ(b·x) and (x·a)σ(x·b).
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Theorem 2.1. Let (R,+, ·) be a Krasner hyperring and σ an equivalence relation

on R. If we define the following hyperoperations on the set of all equivalence classes

with respect to σ, that is, R/σ = {σ(x) | x ∈ R}:

σ(x)⊕ σ(y) = {σ(z) | z ∈ x+ y},

σ(x)⊙ σ(y) = σ(x · y),

then σ is strongly regular if and only if (R/σ,⊕,⊙) is a ring.

In 2016, Omidi et al. [18] introduced the concept of ordered Krasner hyperrings

and investigated some related properties, also see [20]. Recently, Davvaz and Omidi

studied the notion of ordered (semi)hyperrings [8, 16, 19].

Definition 2.2 ([18]). Let (R,+, ·) be a Krasner hyperring. We say that (R,+, ·,≤)

is an ordered Krasner hyperring if the following axioms are fulfilled:

(1) (R,≤) is a partially ordered set.

(2) For every a, b, c ∈ R, a ≤ b implies a + c ≤ b + c, meaning that for any

x ∈ a+ c, there exists y ∈ b+ c such that x ≤ y.

(3) For every a, b, c ∈ R, a ≤ b and 0 ≤ c imply a · c ≤ b · c and c · a ≤ c · b.

3. Examples of Clean Ordered Krasner Hyperrings

Let (R,+, ·,≤) be a commutative ordered hyperring with identity in the sense of

Krasner. Denote the set of all invertible elements in R by U(R) and the set of all

idempotent elements in R by Id(R). We start with the following definition.

Definition 3.1. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then an element

a ∈ R is said to be clean if a ≤ u+ e, where u ∈ U(R) and e ∈ Id(R). Also, we say

that R is clean ordered Krasner hyperring, if all of elements in R are clean elements.

In the following, we present several examples of clean ordered Krasner hyperrings

with different covering relations.

Example 3.2. Every clean Krasner hyperring induces a clean ordered Krasner

hyperring. Indeed: Let (R,+, ·) be a clean Krasner hyperring. Define the order on

R by ≤:= {(a, b) | a = b}. Then (R,+, ·,≤) is a clean ordered Krasner hyperring.

Example 3.3. Consider the hyperring R = {0, 1,−1} with the hyperaddition +

and the multiplication · defined as follows:
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+ 0 1 −1
0 0 1 −1
1 1 1 R
−1 −1 R −1

· 0 1 −1
0 0 0 0
1 0 1 −1
−1 0 −1 1

We have (R,+, ·,≤) is an ordered Krasner hyperring, where the order relation ≤ is

defined by:

≤:= {(0, 0), (1, 1), (−1,−1), (0, 1), (0,−1)}.

The covering relation and the figure of R are given by:

≺= {(0, 1), (0,−1)}.

b
0

b−1

�
�
�@

@
@

b1

Now, it is easy to see that R is a clean ordered Krasner hyperring.

Example 3.4. Let R = {0, 1, a}. Consider the following tables:

+ 0 1 a
0 0 1 a
1 1 R 1
a a 1 {0, a}

· 0 1 a
0 0 0 0
1 0 1 a
a 0 a 0

Then (R,+, ·) is a Krasner hyperring. We have (R,+, ·,≤) is an ordered Krasner

hyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (1, 1), (a, a), (0, 1), (0, a), (a, 1)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (a, 1)}.

b0

ba

b1
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We can easily verify that R is a clean ordered Krasner hyperring.

Example 3.5. Let R = {0, a, b, c} be a set with the hyperoperation + and the

multiplication · defined as follows:

+ 0 a b c
0 0 a b c
a a {0, b} {a, c} b
b b {a, c} {0, b} a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b b 0
c 0 c 0 c

Then (R,+, ·) is a Krasner hyperring [4]. We have (R,+, ·,≤) is an ordered Krasner

hyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, b), (c, a)}.

The covering relation and the figure of R are given by:

≺= {(0, b), (c, a)}.

b
c

b
0

babb

The following can easily be verified: 0 ≤ a + c, a ≤ b + c, b ≤ a + c and c ≤ b + c,

where a, b ∈ Id(R) and c ∈ U(R). Hence, R is a clean ordered Krasner hyperring.

Example 3.6. Let (R,+, ·,≤) be a clean ordered Krasner hyperring. We consider

M =

{(
a 0
0 b

)
| a, b ∈ R

}
,

and define the hyperoperation � and operation � on M as(
a 0
0 b

)
�
(
c 0
0 d

)
=

{(
p 0
0 q

)
| p ∈ a+ c, q ∈ b+ d

}
,(

a 0
0 b

)
�
(
c 0
0 d

)
=

(
ac 0
0 bd

)
,

where A =

(
a 0
0 b

)
and B =

(
c 0
0 d

)
are two arbitrary elements of M. We define

A ≼ B if and only if a ≤ c and b ≤ d. Then, (M,�,�,≼) is an ordered Krasner

hyperring. Let A =

(
a 0
0 b

)
∈ M. Since R is clean, it follows that a ≤ u + e and
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b ≤ v + f , where u, v ∈ U(R) and e, f ∈ Id(R). Thus there exist x ∈ u + e and

y ∈ v + f such that a ≤ x and b ≤ y. This means that(
a 0
0 b

)
≼

(
x 0
0 y

)
∈
(
u 0
0 v

)
�
(
e 0
0 f

)
Now, we have A ≼ U �E, where U =

(
u 0
0 v

)
∈ U(M) and E =

(
e 0
0 f

)
∈ Id(M).

Hence, (M,�,�,≼) is a clean ordered Krasner hyperring.

4. Main Results

Theorem 4.1. Let (Ri,+i, ·i,≤i) be a clean ordered Krasner hyperring for all i ∈ I.

Then
∏
i∈I

Ri = {(ri)i∈I | ri ∈ Ri} is a clean ordered Krasner hyperring.

Proof. For all (xi)i∈I , (yi)i∈I ∈
∏
i∈I

Ri we define

(1) (xi)i∈I + (yi)i∈I = {(zi)i∈I | zi ∈ xi +i yi},
(2) (xi)i∈I · (yi)i∈I = (xi ·i yi)i∈I ,
(3) (xi)i∈I ≤ (yi)i∈I if and only if xi ≤i yi for all i ∈ I.

First we show that (
∏
i∈I

Ri,+, ·,≤) is an ordered Krasner hyperring. Suppose that

(xi)i∈I ≤ (yi)i∈I for (xi)i∈I , (yi)i∈I ∈
∏
i∈I

Ri. If (ti)i∈I ∈ (ai)i∈I + (xi)i∈I , where

(ai)i∈I ∈
∏
i∈I

Ri, then ti ∈ ai +i xi. Since (xi)i∈I ≤ (yi)i∈I , it follows that xi ≤i yi

for all i ∈ I. By hypothesis, we have ti ∈ ai +i xi ≤i ai +i yi. So there exists

si ∈ ai +i yi such that ti ≤i si. Thus we have (ti)i∈I ≤ (si)i∈I . This implies

that (ai)i∈I + (xi)i∈I ≤ (ai)i∈I + (yi)i∈I . Also, we have ai ·i xi ≤i ai ·i yi, where
(0) ≤ (ai)i∈I . This means that (ai)i∈I · (xi)i∈I ≤ (ai)i∈I · (yi)i∈I . Therefore,

∏
i∈I

Ri

is an ordered Krasner hyperring.

Now, let {Ri}i∈I be clean for each i ∈ I and (ai)i∈I ∈
∏
i∈I

Ri. We have ai ≤i

ui +i ei, where ui ∈ U(Ri) and ei ∈ Id(Ri). Thus there exists bi ∈ ui +i ei such that

ai ≤i bi This implies that (ai)i∈I ≤ (bi)i∈I , where (bi)i∈I ∈ (ui)i∈I + (ei)i∈I . Then

(ai)i∈I ≤ (ui)i∈I +(ei)i∈I , where (ui)i∈I ∈ U(
∏
i∈I

Ri) and (ei)i∈I ∈ Id(
∏
i∈I

Ri). Hence,∏
i∈I

Ri is a clean ordered Krasner hyperring. �

Let (R,+, ·,≤) and (T,�,�,≼) be two ordered Krasner hyperring. A map φ :

R → T is called a homomorphism if for all a, b in R: (1) φ(a+ b) ⊆ φ(a)�φ(b); (2)
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φ(a · b) = φ(a) � φ(b) and (3) φ is isotone, that is, for any a, b ∈ R, a ≤ b implies

φ(a) ≼ φ(b).

Theorem 4.2. Any homomorphic image of a clean ordered Krasner hyperring is a

clean ordered Krasner hyperring.

Proof. Suppose that φ is a surjective homomorphism from an ordered Krasner hy-

perring (R,+, ·,≤) into an ordered Krasner hyperring (T,�,�,≼). Take any t ∈ T ;

then there exists x ∈ R such that φ(x) = t. Since R is clean, we have x ≤ u + e,

where u ∈ U(R) and e ∈ Id(R). Thus there exists y ∈ u + e such that x ≤ y. So,

we have

φ(x) ≼ φ(y) ∈ φ(u+ e) ⊆ φ(u)� φ(e),

where φ(u) ∈ U(T ) and φ(e) ∈ Id(T ). This completes the proof. �

Theorem 4.3. A clean ordered Krasner hyperring (R,+, ·,≤) is a clean ordered

ring if and only if 1 + (−1) = {0}.

Proof. The necessity follows easily, so that we will concentrate on the sufficiency.

To that aim, Suppose that x, y ∈ R. Let u, v ∈ x+ y. Then we have

u− v ⊆ (a+ b)− (a+ b)
= (a+ b)− a− b
= (a+ (−a)) + (b+ (−b))
= a · (1 + (−1)) + b · (1 + (−1))
= a · {0}+ b · {0}
= 0 + 0
= {0}.

Thus u− v = {0} and hence u = v. It follows that a+ b = {u}, and so + is a binary

operation. Therefore, (R,+, ·,≤) is an ordered ring. By hypothesis, every a ∈ R

can be written as a ≤ u+ e, where u ∈ U(R), e ∈ Id(R) and u+ e is a sigelton set.

Thus R is a clean ordered ring. �

The concept of pseudoorder on an ordered semihypergroup (S, ◦,≤) was intro-

duced and studied by Davvaz et al. [10]. Now, we extend this notion for ordered

Krasner hyperrings.

Definition 4.4. Let (R,+, ·,≤) be an ordered Krasner hyperring. A relation σ on

R is called pseudoorder if the following conditions hold:

(1) ≤⊆ σ;
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(2) aσb and bσc imply aσc;

(3) aσb implies a+ cσb+ c, for all c ∈ R;

(4) aσb implies a · cσb · c, for all c ∈ R.

We now give the main result of this paper as bellow.

Theorem 4.5. Let (R,+, ·,≤) be a clean ordered Krasner hyperring and σ a pseudo-

order on R. Then, there exists a strongly regular equivalence relation σ∗ = {(a, b) ∈
R×R | aσb and bσa} on R such that (R/σ∗,⊕,⊙,≼σ∗) is a clean ordered ring, where

≼σ∗ := {(σ∗(x), σ∗(y)) ∈ R/σ∗×R/σ∗ | ∃a ∈ σ∗(x), ∃b ∈ σ∗(y) such that (a, b) ∈ σ}.

Proof. We divide the proof into three steps.

Step 1. We first construct an ordered ring from an ordered Krasner hyperring.

Suppose that σ∗ is the relation on R defined as follows:

σ∗ = {(a, b) ∈ R×R | aσb and bσa}.

Clearly, σ∗ is a strongly regular relation on (R,+) and (R, ·). Hence, By Theorem

2.1, R/σ∗ with the following operations is a ring:

σ∗(x)⊕ σ∗(y) = σ∗(z), for all z ∈ x+ y;

σ∗(x)⊙ σ∗(y) = σ∗(x · y).

Now, for each σ∗(x), σ∗(y) ∈ R/σ∗, define the order relation ≼σ∗ on R/σ∗ by:

≼σ∗ := {(σ∗(x), σ∗(y)) ∈ R/σ∗ ×R/σ∗ | ∃a ∈ σ∗(x),∃b ∈ σ∗(y) such that (a, b) ∈ σ}.

We have

σ∗(x) ≼σ∗ σ∗(y) ⇔ xσy.

Now, we prove that (R/σ∗,⊕,⊙,≼σ∗) is an ordered ring. Let a, b, c ∈ R. Since

(a, a) ∈≤⊆ σ, we have σ∗(a) ≼σ∗ σ∗(a). If σ∗(a) ≼σ∗ σ∗(b) and σ∗(b) ≼σ∗ σ∗(a),

then (a, b) ∈ σ and (b, a) ∈ σ. This means that (a, b) ∈ σ∗, and so σ∗(a) = σ∗(b).

Let σ∗(a) ≼σ∗ σ∗(b) and σ∗(b) ≼σ∗ σ∗(c). Then, (a, b) ∈ σ and (b, c) ∈ σ. This

means that (a, c) ∈ σ, and so σ∗(a) ≼σ∗ σ∗(c). Therefore, ≼σ∗ is an order on R/σ∗.

Now, let σ∗(x) ≼σ∗ σ∗(y) and σ∗(z) ∈ R/σ∗. Then xσy and z ∈ R. Since σ is a

pseudoorder on R, we have x+ zσy+ z. So, for all a ∈ x+ z and b ∈ y+ z, we have

aσb. This implies that σ∗(a) ≼σ∗ σ∗(b). Hence, σ∗(x) ⊕ σ∗(z) ≼σ∗ σ∗(y) ⊕ σ∗(z).

Similarly, we have σ∗(x)⊙ σ∗(z) ≼σ∗ σ∗(y)⊙ σ∗(z).

Step 2. The following hold for an ordered Krasner hyperring R:

(1) If e ∈ Id(R), then σ∗(e) ∈ Id(R/σ∗).
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(2) If u ∈ U(R), then σ∗(u) ∈ U(R/σ∗).

Step 3. We finally show that R/σ∗ is clean.

Suppose that (R,+, ·,≤) is a clean ordered Krasner hyperring. Let σ∗(a) ∈ R/σ∗,

where a ∈ R. Since R is clean, there exist u ∈ U(R) and e ∈ Id(R) such that

a ≤ u + e. Hence, there exists x ∈ u + e such that a ≤ x. So, (a, x) ∈≤⊆ σ.

Thus, aσx. Since a ∈ σ∗(a) and x ∈ σ∗(x), we have σ∗(a) ≼σ∗ σ∗(x). Since

σ∗(x) ∈ σ∗(u) ⊕ σ∗(e), it follows that σ∗(a) ≼σ∗ σ∗(u) ⊕ σ∗(e). Now, by pervious

step, σ∗(a) is clean. Hence R/σ∗ is clean. �

The following example illustrates this result.

Example 4.6. Let (R,+, ·,≤) be the clean ordered Krasner hyperring defined as

in Example 3.5. Consider the pseudoorder

σ = {(0, 0), (a, a), (b, b), (c, c), (0, b), (b, 0), (a, c), (c, a)}.

Note that σ∗ = σ, and that

R/σ∗ = {u1, u2}, where u1 = {0, b} and u2 = {a, c}.

Now, (R/σ∗,⊕,⊙,≼σ∗) is a clean ordered ring, where ⊕ and ⊙ are defined in the

following tables:

⊕ u1 u2
u1 u1 u2
u2 u2 u1

⊙ u1 u2
u1 u1 u1
u2 u1 u2

and ≼σ∗= {(u1, u1), (u2, u2)}.

An element x of an ordered Krasner hyperring (R,+, ·,≤) is said to be regular if

there exists an element a ∈ R such that x ≤ x · a · x. An ordered Krasner hyperring

R is said to be regular if every element of R is regular.

Corollary 4.7. Let us follow the notations and definitions used in the Theorem 4.5.

If R is regular, then R/σ∗ is regular.

Proof. Let R be regular and σ∗(x) ∈ R/σ∗, where x ∈ R. Then there exists a ∈ R

such that x ≤ x · a · x. Clearly, ≤⊆ σ, so xσx · a · x. Since x ∈ σ∗(x) and

x · a · x ∈ σ∗(x · a · x), clearly, we obtain σ∗(x) ≼σ∗ σ∗(x · a · x). This shows that

σ∗(x) ≼σ∗ σ∗(x)⊙ σ∗(a)⊙ σ∗(x), so R/σ∗ is regular. �
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