• Title/Summary/Keyword: strongly 2-primal ring

Search Result 7, Processing Time 0.016 seconds

ON STRONGLY 2-PRIMAL RINGS

  • Hwang, Seo-Un;Lee, Yang;Park, Kwang-Sug
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.555-567
    • /
    • 2007
  • We first find strongly 2-primal rings whose sub direct product is not (strongly) 2-primal. Moreover we observe some kinds of ring extensions of (strongly) 2-primal rings. As an example we show that if R is a ring and M is a multiplicative monoid in R consisting of central regular elements, then R is strongly 2-primal if and only if so is $RM^{-1}$. Various properties of (strongly) 2-primal rings are also studied.

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.

ON RINGS WHOSE ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • Jeong, Jeonghee;Kim, Nam Kyun
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.399-407
    • /
    • 2022
  • In this paper, we continue to study the von Neumann regularity of rings whose essential maximal right ideals are GP-injective. It is proved that the following statements are equivalent: (1) R is strongly regular; (2) R is a 2-primal ring whose essential maximal right ideals are GP-injective; (3) R is a right (or left) quasi-duo ring whose essential maximal right ideals are GP-injective. Moreover, it is shown that R is strongly regular if and only if R is a strongly right (or left) bounded ring whose essential maximal right ideals are GP-injective. Finally, we prove that a PI-ring whose essential maximal right ideals are GP-injective is strongly π-regular.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.

SUMS OF TRIPOTENT AND NILPOTENT MATRICES

  • Abdolyousefi, Marjan Sheibani;Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.913-920
    • /
    • 2018
  • Let R be a 2-primal strongly 2-nil-clean ring. We prove that every square matrix over R is the sum of a tripotent and a nilpotent matrices. The similar result for rings of bounded index is proved. We thereby provide a large class of rings over which every matrix is the sum of a tripotent and a nilpotent matrices.

MCCOY CONDITION ON IDEALS OF COEFFICIENTS

  • Cheon, Jeoung Soo;Huh, Chan;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1887-1903
    • /
    • 2013
  • We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal-${\pi}$-McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal-${\pi}$-McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal-${\pi}$-McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal-${\pi}$-McCoy rings by examining various sorts of ordinary ring extensions.

ON RIGHT QUASI-DUO RINGS WHICH ARE II-REGULAR

  • Kim, Nam-Kyun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.217-227
    • /
    • 2000
  • This paper is motivated by the results in [2], [10], [13] and [19]. We study some properties of generalizations of commutative rings and relations between them. We also show that for a right quasi-duo right weakly ${\pi}-regular$ ring R, R is an (S,2)-ring if and only if every idempotent in R is a sum of two units in R, which gives a generalization of [2, Theorem 4] on right quasi-duo rings. Moreover we find a condition which is equivalent to the strongly ${\pi}-regularity$ of an abelian right quasi-duo ring.

  • PDF