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MCCOY CONDITION ON IDEALS OF COEFFICIENTS

Jeoung Soo Cheon, Chan Huh, Tai Keun Kwak, and Yang Lee

Abstract. We continue the study of McCoy condition to analyze zero-
dividing polynomials for the constant annihilators in the ideals generated
by the coefficients. In the process we introduce the concept of ideal-π-
McCoy rings, extending known results related to McCoy condition. It
is shown that the class of ideal-π-McCoy rings contains both strongly
McCoy rings whose non-regular polynomials are nilpotent and 2-primal
rings. We also investigate relations between the ideal-π-McCoy property
and other standard ring theoretic properties. Moreover we extend the
class of ideal-π-McCoy rings by examining various sorts of ordinary ring
extensions.

1. Ideal-π-McCoy rings

Throughout this note every ring is associative with identity unless otherwise
stated. Let R be a ring and we use R[x] to denote the polynomial ring with an
indeterminate x over R. Denote the n by n full matrix ring over R by Matn(R)
and the n by n upper (resp. lower) triangular matrix ring over R by Un(R)
(resp. Ln(R)). Use Eij for the matrix with (i, j)-entry 1 and elsewhere 0. Z and
Zn denote the set of integers and the ring of integers modulo n, respectively.
Note Matn(R)[x] ∼= Matn(R[x]) and Un(R)[x] ∼= Un(R[x]). We will apply these
isomorphisms freely. N∗(R) and N(R) denote the prime radical and the set of
all nilpotent elements in R, respectively.

McCoy [21, Theorem 2] showed the following fact in 1942:

f(x)g(x) = 0 implies f(x)r = 0 for some nonzero r ∈ R,

where f(x) and 0 6= g(x) are polynomials over a commutative ring R. Based
on this result, Nielsen [22] in 2006 called a (possibly noncommutative) ring
R (possibly without identity) right McCoy when the equation f(x)g(x) = 0
implies f(x)r = 0 for some nonzero r ∈ R, where f(x), 0 6= g(x) are polynomials
in R[x]. Left McCoy rings are defined similarly. If a ring is both left and right
McCoy, then the ring is called a McCoy ring. Nielsen [22, Section 3 and Section
4] showed that the McCoy condition is not left-right symmetric.
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It is well-known that the set of nilpotent elements forms an ideal in any
commutative ring. This property is also possessed by the following kinds of
noncommutative rings. Given a ring R, Shin [24, Proposition 1.11] proved that
N∗(R) = N(R) if and only if every minimal prime ideal of R is completely
prime. Birkenmeier et al. [6] called a ring R 2-primal when N∗(R) = N(R).
Note that R is 2-primal if and only if R/N∗(R) is reduced. A well-known prop-
erty between the commutativity and the 2-primal condition is the insertion-

of-factors-property (or simply IFP). Due to Bell [5], a ring R is called IFP if
ab = 0 implies aRb = 0 for a, b ∈ R. IFP rings are 2-primal by [24, Theorem
1.5]. Following Cohn [8], a ring R is called reversible if ab = 0 implies ba = 0 for
a, b ∈ R. Anderson and Camillo [2], observing the rings whose zero products
commute, used the term ZC2 for what is called reversible. A ring R is called
reduced if N(R) = 0. Reduced rings are reversible via a simple computation,
and commutative rings are clearly reversible. Every reversible ring is McCoy
by [22, Theorem 2], and hence both commutative rings and reduced rings are
McCoy. It is evident that reversible rings are IFP. However IFP rings need not
be right McCoy by [22, Section 3]. There exist right McCoy rings that are not
IFP with the help of [19, Theorem 2] and [17, Example 1.3].

According to Hong et al. [12], a ring R (possibly without identity) is called
strongly right McCoy provided that f(x)g(x) = 0 implies f(x)r = 0 for some
nonzero r in the right ideal of R generated by the coefficients of g(x), where
f(x) and g(x) are nonzero polynomials in R[x]. Strongly left McCoy rings are
defined similarly. If a ring is both strongly left and strongly right McCoy, then
the ring is called a strongly McCoy ring. Reversible rings are strongly McCoy by
[12, Theorem 1.6] or the proof of Nielsen [22, Theorem 2] and strongly McCoy
rings are clearly McCoy. A ring is usually called right duo if each right ideal
is two-sided. It is easily checked that right duo rings are IFP. Right duo rings
are strongly right McCoy by the proof of [7, Theorem 8.2], and moreover we
can find more concrete shape of right annihilators in the proof of [12, Theorem
1.11].

Due to Jeon et al. [15], a ringR (possibly without identity) is called π-McCoy

if f(x)g(x) ∈ N(R[x]) implies f(x)r ∈ N(R[x]) for some nonzero r ∈ R, where
f(x) and g(x) are nonzero polynomials in R[x]. The class of π-McCoy rings
contains McCoy rings by [15, Proposition 1.1(2)] and 2-primal rings (hence
reversible rings, right duo rings and IFP rings) by [15, Proposition 1.7]. Next
we consider the π-McCoy in conjunction with the nilpotency.

Let R be a ring and f(x), 0 6= g(x) ∈ R[x] and J be the ideal of R generated
by the coefficients of g(x). In this situation consider the following condition:

(∗) f(x)g(x) ∈ N(R[x]) implies f(x)a ∈ N(R[x]) for some nonzero a ∈ J.

Recall that an element is called right (resp. left) regular if its right (resp.
left) annihilator is zero. An element is called regular if it is both left and right
regular.
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Proposition 1.1. (1) The condition (∗) is left-right symmetric.

(2) Let R be a ring over which non-regular polynomials are nilpotent. If R
is strongly McCoy, then R satisfies the condition (∗).

Proof. (1) Let R be a ring satisfying the condition (∗), and we will show that
R satisfies the left version of the condition (∗). Say f(x)g(x) ∈ N(R[x])
for f(x), g(x) ∈ R[x] with f(x) 6= 0. From f(x)g(x) ∈ N(R[x]) we also get
g(x)f(x) ∈ N(R[x]). Since R satisfies the condition (∗), g(x)b ∈ N(R[x]) for
some nonzero b in the ideal of R generated by the coefficients of f(x). This
yields bg(x) ∈ N(R[x]). The converse can be proved by changing the roles of
f(x) and g(x).

(2) Suppose that R is a strongly McCoy ring whose non-regular polynomials
are nilpotent. Let f(x)g(x) ∈ N(R[x]) for f(x), g(x) ∈ R[x]. If f(x) = 0 or
g(x) = 0, then R satisfies both the condition (∗) and the left version of the
condition (∗). So we suppose that f(x) 6= 0 and g(x) 6= 0. We apply the proof
of [15, Proposition 1.1(2)]. Let (f(x)g(x))n = 0 and (f(x)g(x))n−1 6= 0 for
some n ≥ 1. Let I and J be the ideals of R generated by the coefficients of
f(x) and g(x), respectively.

Case 1. f(x)g(x) = 0 and g(x)f(x) = 0

Since R is strongly McCoy, there exist 0 6= a ∈ J and 0 6= b ∈ I such that
f(x)a = 0 and bg(x) = 0.

Case 2. f(x)g(x) = 0 and g(x)f(x) 6= 0

Since R is strongly McCoy, there exist 0 6= a ∈ J and 0 6= b ∈ I such that
f(x)a = 0 and bg(x) = 0.

Case 3. f(x)g(x) 6= 0 and g(x)f(x) = 0

Since R is strongly McCoy, there exist 0 6= a ∈ J and 0 6= b ∈ I such that
af(x) = 0 (hence f(x)a ∈ N(R[x])) and g(x)b = 0 (hence bg(x) ∈ N(R[x])).

Case 4. f(x)g(x) 6= 0 (then n ≥ 2) and g(x)f(x) 6= 0

Recall (f(x)g(x))n−1 6= 0. From (f(x)g(x))(f(x)g(x))n−1 = 0, there exists
0 6= b ∈ I ∩ J such that f(x)g(x)b = 0 since R is strongly right McCoy. So
g(x)b ∈ N(R[x]) by the hypothesis, entailing bg(x) ∈ N(R[x]).

By Cases 1, 2, 3 and 4, we have that

bg(x) ∈ N(R[x]) for some 0 6= b ∈ I.

Thus R satisfies the condition (∗) by (1). �

As we see in the proof of Proposition 1.1(2), the condition (∗) is satisfied
automatically when f(x) = 0 or g(x) = 0. So we will examine the condition
(∗), assuming that f(x) 6= 0 and g(x) 6= 0.

The strongly McCoy condition is not left-right symmetric by help of [16,
Example 1.8]. Based on Proposition 1.1, a ring will be called ideal-π-McCoy

if it satisfies the condition (∗). Ideal-π-McCoy rings are clearly π-McCoy but
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the converse need not hold by Example 1.4(3) below. Note that there exists
an ideal-π-McCoy ring which is not strongly McCoy by Example 1.3(2),(3) to
follow.

Given a ring R and n ≥ 2, consider the subrings Dn(R) = {(mij) ∈
Un(R) | m11 = · · · = mnn} and Vn(R) = {m = (mij) ∈ Dn(R) | mst =
m(s+1)(t+1) for s = 1, . . . , n− 2 and t = 2, . . . , n− 1} of Un(R). For any set M

of matrices over a ring R, MT denotes the set of all transposes of matrices in
M .

Lemma 1.2. (1) Let R be a ring with an essential ideal I of R such that

I[x] ⊆ N(R[x]). Then R is ideal-π-McCoy.

(2) Let R be a ring with a nilpotent essential ideal. Then Matn(R) is ideal-

π-McCoy for n ≥ 1.
(3) Let R be a ring with an essential ideal whose finitely generated subrings

are nilpotent. Then Matn(R) is ideal-π-McCoy for n ≥ 1.
(4) Both Un(A) and Ln(A) are ideal-π-McCoy for any ring A and n ≥ 2.
(5) Both Dn(A) and Dn(A)

T are ideal-π-McCoy for any ring A and n ≥ 2.
(6) Both Vn(A) and Vn(A)

T are ideal-π-McCoy for any ring A and n ≥ 2.
(7) The factor ring R[x]/〈xn〉 is ideal-π-McCoy for any n ≥ 2, where 〈xn〉

is a two-sided ideal of R[x] generated by xn.

(8) Let A, B be any rings and AMB be an (A,B)-bimodule such that aM 6= 0
and Mb 6= 0 for 0 6= a ∈ A and 0 6= b ∈ B. Then (A M

0 B ) is ideal-π-McCoy.

Proof. (1) Let f(x)g(x) ∈ N(R[x]) for nonzero polynomials f(x), g(x) in R[x]
and let J be the ideal of R generated by the coefficients of g(x). Since I is an
essential ideal, we have I∩J 6= 0. If f(x) ∈ (I∩J)[x], then f(x)r ∈ N(R[x]) for
all r ∈ R. If f(x) /∈ (I ∩ J)[x], then f(x)s ∈ N(R[x]) for all nonzero s ∈ I ∩ J .
Thus R is ideal-π-McCoy.

(2) Let I be a nilpotent essential ideal of R. Then Matn(I) is a nilpo-
tent essential ideal of Matn(R). Clearly Matn(I)[x] ⊆ N(Matn(R)[x]). Thus
Matn(R) is ideal-π-McCoy by (1).

(3) Let I be an essential ideal whose finitely generated subrings are nilpotent.
Then Matn(I) is also an essential ideal of Matn(R). Let f(x) = (a(0)ij) +
(a(1)ij)x+ · · ·+ (a(n)ij)x

n ∈ Matn(I)[x] and S be the subring of I generated
by a(k)ij ’s for k = 0, . . . , n and i, j = 1, . . . , n. By hypothesis, S is nilpotent
and this yields that f(x) is nilpotent. Thus Matn(R) is ideal-π-McCoy by (1).

(4) Let A be any ring and R = Un(A) for n ≥ 2. Then

I = {(mij) ∈ R | mii = 0 for all i = 1, . . . , n}

is an essential ideal of R such that In = 0. Thus R is ideal-π-McCoy by (2).
The proofs of (5), (6), (8) are almost same as (4), noting that ( 0 M

0 0 ) is a
nilpotent essential ideal of (A M

0 B ).
(6)⇔(7) follows from the well-known fact that Vn(R) ∼= R[x]/〈xn〉. �
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Question. Is a ring R ideal-π-McCoy when Matn(R) (Un(R)) is ideal-π-
McCoy?

Given a ring R and an (R,R)-bimodule M , the trivial extension of R by
M is the ring T (R,M) = R ⊕ M with the usual addition and the following
multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to
the ring of all matrices ( r m

0 r ), where r ∈ R and m ∈ M and the usual matrix
operations are used.

Hence, the trivial extension T (R,R) of any ring R is an ideal-π-McCoy ring
by the similar argument to Lemma 1.2(4).

We will use freely the fact that ideal-π-McCoy rings are π-McCoy.

Example 1.3. (1) Let R be a reduced ring. Then Matn(R) is not π-McCoy
when n ≥ 2 by [15, Theorem 1.4]. Thus Matn(R) cannot be ideal-π-McCoy
over a reduced ring R.

(2) There exist many kinds of rings that satisfy the hypothesis of Lemma
1.2(2). For example, Zpm(m ≥ 2) for a prime p has an essential nilpotent ideal
pZpm . So R = Matn(Zpm) (n ≥ 1, m ≥ 2) is ideal-π-McCoy by Lemma 1.2(2).
Note that R is neither left nor right McCoy by [15, Proposition 1.6] and so R
is not strongly McCoy.

(3) By Lemma 1.2(4), we can always construct an ideal-π-McCoy ring that
is neither left nor right McCoy. Un(A) (for any ring A and n ≥ 2) is ideal-π-
McCoy but neither left nor right McCoy by [15, Example 1.3] and hence R is
not strongly McCoy.

Recall that the class of π-McCoy rings contains McCoy rings and ideal-π-
McCoy rings. Moreover the properties of the McCoy and the ideal-π-McCoy
are independent of each other by the following.

Example 1.4. (1) (non-semiprime case) There exist ideal-π-McCoy rings that
are not one-sided McCoy by Example 1.3(2),(3).

(2) (semiprime case) There exists an ideal-π-McCoy ring that is not right
McCoy, applying the proof of [14, Theorem 2.2]. Let S be a reduced ring, n
be a positive integer and Rn be the 2n by 2n upper triangular matrix ring
over S. Define a map σ : Rn → Rn+1 by A 7→ (A 0

0 A ), then Rn can be
considered as a subring of Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn). Notice that
D = {Rn, σnm}, with σnm = σm−n whenever n ≤ m, is a direct system over
{1, 2, . . .}. Set R = lim

−→
Rn be the direct limit of D. Then R is a semiprime ring

by [14, Theorem 2.2], and R is neither left nor right McCoy by [15, Example
1.3]. Moreover R is an ideal-π-McCoy ring by Theorem 2.3 to follow since every
Rn is ideal-π-McCoy by Lemma 1.2(4). As another proof, consider the ideal
I = {A ∈ R | the diagonal entries of A are zero} of R. Then I is an essential
ideal of R whose finitely generated subrings are nilpotent since the subring is
contained in U2k(S) for some k ≥ 1. So R is ideal-π-McCoy by Lemma 1.2(3).

(3) There exists a McCoy ring that is not ideal-π-McCoy. Let I be an infinite
indexing set and Ri be a ring for all i ∈ I. Let R =

∑
i∈I Ri be the direct
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sum of Ri’s. Suppose that Rj is not ideal-π-McCoy for some j ∈ I. Then by
Proposition 2.1(2), to follow, R is not ideal-π-McCoy. But R is McCoy by [7,
Proposition 4.3] and thus R is π-McCoy by [15, Proposition 1.1(2)].

McCoy rings are π-McCoy, but π-McCoy rings need not be ideal-π-McCoy
by Example 1.4(3). We will see another π-McCoy ring but not ideal-π-McCoy
in the following.

Example 1.5. Let R = Mat2(Z)
⊕

Mat2(Z4). Then Mat2(Z) is not π-McCoy
by [15, Theorem 1.4] but Mat2(Z4) is non-semiprime with N∗(Mat2(Z4)) =
Mat2(2Z4); hence R is π-McCoy by [15, Proposition 2.7]. Note that Mat2(Z)
is not ideal-π-McCoy by Example 1.3(1), and so R is not ideal-π-McCoy by
Proposition 2.1(1) to follow.

For any polynomial f(x) in R[x], let Cf(x) denote the set of all coefficients of
f(x). In [23], Rege and Chhawchharia called a ring R Armendariz if whenever
any polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then ab = 0 for all
a ∈ Cf(x) and b ∈ Cg(x). This nomenclature was used by them since it was
Armendariz [4, Lemma 1] who initially showed that a reduced ring always
satisfies this condition. The class of 2-primal rings and the class of Armendariz
rings don’t imply each other by [23, Example 3.2] and [3, Example 4.8].

Proposition 1.6. (1) Armendariz rings are ideal-π-McCoy.

(2) 2-primal rings are ideal-π-McCoy.

Proof. (1) Note that R is Armendariz if and only if R[x] is, by [1, Theorem
2]. Let R be Armendariz. Suppose that f(x)g(x) ∈ N(R[x]) for nonzero
polynomials f(x), g(x) in R[x]. By [3, Corollary 5.2] and [3, Proposition 2.7],
we have ab ∈ N(R) for all a ∈ Cf(x) and b ∈ Cg(x) and so f(x)b′ ∈ N(R)[x] =
N(R[x]) for some 0 6= b′ ∈ Cg(x) because g(x) 6= 0. Thus R is ideal-π-McCoy.

(2) Note that R[x] over a 2-primal ring R is 2-primal by [6, Proposition 2.6],
and henceN(R[x]) = N(R)[x]. LetR be a 2-primal ring. Then R[x]/N(R)[x] ∼=
(R/N(R))[x] is reduced and N(R[x]) = N(R)[x]. Let f(x)g(x) ∈ N(R[x]) =
N(R)[x] for nonzero polynomials f(x), g(x) in R[x]. Since (R/N(R))[x] is re-
duced and so Armendariz, ab ∈ N(R) for all a ∈ Cf(x) and b ∈ Cg(x). By the
same argument to the proof of (1), we can show that R is ideal-π-McCoy. �

The converse of Proposition 1.6(1) does not hold with the help of Example
1.7 to follow. Proposition 1.6(2) implies that 2-primal rings are π-McCoy [15,
Proposition 1.7], since ideal-π-McCoy rings are π-McCoy, and the converse of
Proposition 1.6(2) need not hold. Let R be the ring in Example 1.4(2). Then
R is an ideal-π-McCoy ring, but not 2-primal by [13, Example 1.2].

As a generalization of Armendariz rings, Antoine [3] called a ring R nil-

Armendariz if ab ∈ N(R) for all a ∈ Cf(x) and b ∈ Cg(x) whenever two poly-
nomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) ∈ N(R)[x]. Nil-Armendariz rings
contain both 2-primal rings and Armendariz rings, but each converse does not
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hold by [3, Example 4.8 and Example 4.9]. Hence, we raise the following ques-
tion:

Question. Is a ring R ideal-π-McCoy if R is nil-Armendariz?

Recall that a ring R is called (von Neumann) regular if for each a ∈ R there
exists x ∈ R such that a = axa. Observe that a regular ring R is Armendariz
if and only if R is nil-Armendariz if and only if R is 2-primal by [18, Theorem
20].

A ring is called Abelian if every idempotent is central. Ideal-π-McCoy rings
need not be Abelian as can be seen by Un(A) for n ≥ 2 and any ring A. Abelian
rings are not π-McCoy by [15, Example 1.9] and so not ideal-π-McCoy. Note
that a ring R is Abelian regular if and only if R is reduced regular [10, Theorem
3.2]. Consequently a regular ring R is reduced if and only if R is reversible if and
only if R is Abelian if and only if R is 2-primal. Since the class of ideal-π-McCoy
rings contains both Armendariz rings and 2-primal rings, one may conjecture
that regular ideal-π-McCoy rings are Abelian (hence reduced). However the
following provides a negative answer.

Example 1.7. We use the ring in [15, Example 1.10]. Let S be a regular ring,
n be a positive integer, and Rn be the 2n by 2n full matrix ring over S. Define
a map σ : Rn → Rn+1 by A 7→ (A 0

0 A ), then Rn can be considered as a subring
of Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn). Notice that D = {Rn, σnm},
with σnm = σm−n whenever n ≤ m, is a direct system over I = {1, 2, . . .}.
Set R = lim

−→
Rn be the direct limit of D. Then R is regular since every Rn is

regular, but not reduced.
Let f(x)g(x) ∈ N(R[x]) for 0 6= f(x), 0 6= g(x) ∈ R[x]. Then there exists

k ≥ 1 such that f(x), g(x) ∈ Rk[x]. Since g(x) 6= 0, there exists a nonzero
coefficient of g(x), say (aij) 6= 0 with apq 6= 0. So the ideal of R generated by
the coefficients of g(x) contains the matrix

(bst) = E1p(aij)Eq2k+1

in Rk+1 such that the (1, 2k+1)-entry of (bst) is apq and other entries of (bst)

are all zero. Thus (f(x)(bst))
2k+1

= 0 and this implies that R is ideal-π-McCoy.

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. Clearly
Abelian rings are directly finite. Both strongly McCoy rings and 2-primal
rings are directly finite by help of [6, Proposition 2.10] and [7, Theorem 5.2].
So one may conjecture that ideal-π-McCoy rings are directly finite. However
the following erases the possibility.

Example 1.8. We use the ring and argument in [15, Example 1.8]. Let F
be a field and V be an infinite dimensional vector space over F with a basis
{v1, v2, . . . }. Consider the endomorphism ring R = EndF (V) and define f, g ∈
R such that fv1 = 0, fvj = vj−1 for j = 2, 3, . . . and gvi = vi+1 for i = 1, 2, . . ..
Then fg = 1 but gf 6= 1. Now consider Un(R) for n ≥ 2. Then Un(R) is
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ideal-π-McCoy by Lemma 1.2(4). Take a = (aij) and b = (bij) in Un(R) such
that aii = f for all i, elsewhere zero, and bii = g for all i, elsewhere zero. Then
ab = 1 but ba 6= 1; hence Un(R) is not directly finite.

The following is a similar result to [16, Proposition 2.1].

Proposition 1.9. Let R be an ideal-π-McCoy ring and suppose that f1(x), . . .,
fn(x) ∈ R[x] are such that f1(x) · · · fn(x) ∈ N(R[x]) and fi(x) 6= 0 for all

i ∈ {2, . . . , n}. Then there exists a nonzero ri in the ideal of R generated by

the coefficients of fi(x) in R such that

f1(x) · · · fn−1(x)rn, . . . , f1(x)f2(x)r3 · · · rn, f1(x)r2r3 · · · rn ∈ N(R[x])

for i = 2, . . . , n.

Proof. Suppose that R is ideal-π-McCoy. Since (f1(x) · · · fn−1(x))fn(x) ∈
N(R[x]), there exists a nonzero rn in the ideal of R generated by the co-
efficients of fn(x) such that (f1(x) · · · fn−1(x))rn ∈ N(R[x]). Hence we get
rn(f1(x) · · · fn−1(x)) ∈ N(R[x]). Since rn(f1(x) · · · fn−1(x)) ∈ N(R[x]), there
exists a nonzero rn−1 in the ideal of R generated by the coefficients of fn−1(x),
entailing rn−1rn(f1(x) · · · fn−2(x)) ∈ N(R[x]).

Proceeding in this manner, we finally obtain r2 · · · rn−1rnf1(x) ∈ N(R[x])
and this yields

f1(x)r2 · · · rn−1rn ∈ N(R[x]),

where ri is a nonzero element in the ideal of R generated by the coefficients of
fi(x) for i = 2, . . . , n. �

When we apply this proposition we should proceed our computation for each
of {rn, . . . , r3 · · · rn, r2r3 · · · rn} to be nonzero.

2. Examples of ideal-π-McCoy rings

In this section we examine the ideal-π-McCoy property in various kinds of
ordinary ring extensions.

Proposition 2.1. Let Γ be an index set and Rγ be a ring for each γ ∈ Γ.
(1) The direct product R =

∏
γ∈ΓRγ is ideal-π-McCoy if and only if Rγ is

ideal-π-McCoy for all γ ∈ Γ.
(2) The direct sum R =

∑
γ∈ΓRγ (possibly without identity) is ideal-π-

McCoy if and only if Rγ is ideal-π-McCoy for all γ ∈ Γ.
(3) Let R be the subring of

∏
γ∈ΓRγ generated by

∑
γ∈ΓRγ and 1∏

γ∈Γ
Rγ

.

Then R is ideal-π-McCoy if and only if Rγ is ideal-π-McCoy for all γ ∈ Γ.
(4) Let R be an ideal-π-McCoy ring. If I is a proper right or left ideal of R,

then I is an ideal-π-McCoy ring (without identity).
(5) The class of ideal-π-McCoy rings is not closed under subrings.

(6) The class of ideal-π-McCoy rings is not closed under homomorphic im-

ages.



MCCOY CONDITION ON IDEALS OF COEFFICIENTS 1895

Proof. (1) Let f(x)g(x) ∈ N(R[x]) for

f(x) =

m∑

i=0

(a(i)γ)x
i, 0 6= g(x) =

n∑

j=0

(b(j)γ)x
j ∈ R[x].

Letting fγ(x) =
∑m

i=0 a(i)γx
i and gγ(x) =

∑n
j=0 b(j)γx

j , we can write f(x) =

(fγ(x)) and g(x) = (gγ(x)). From f(x)g(x) ∈ N(R[x]), we get fγ(x)gγ(x) ∈
N(Rγ [x]) for all γ ∈ Γ. Suppose that each ring Rγ is ideal-π-McCoy. Since
g(x) 6= 0 there exists some index k ∈ Γ such that gk(x) 6= 0. Then since Rk

is ideal-π-McCoy, there exists some nonzero rk in the ideal of Rk generated by
the coefficients of gk(x) such that fk(x)rk ∈ N(Rk[x]). Say rk =

∑
λ∈Λ sλdλtλ

where sλ, tλ ∈ Rk, dλ ∈ {b | b is a coefficient of gk(x)}, and Λ is finite. Let
r = (rγ) ∈ R be the sequence with rγ = rk for γ = k and rγ = 0 for γ 6= k;
and (u(λ)γ) be a coefficient of g(x) for λ ∈ Λ such that u(λ)γ = dλ for γ = k.
Then r =

∑
λ∈Λ(s(λ)γ)(u(λ)γ)λ(t(λ)γ) where s(λ)γ = sλ, t(λ)γ = tλ for γ = k

and s(λ)γ = 0, t(λ)γ = 0 for γ 6= k. This yields f(x)r ∈ N(R[x]), and so R is
ideal-π-McCoy.

Conversely, let R be ideal-π-McCoy, and assume on the contrary that Rγ0

is not ideal-π-McCoy for some γ0 ∈ Γ. Then there exist fγ0
(x), 0 6= gγ0

(x)
in Rγ0

[x] such that fγ0
(x)gγ0

(x) ∈ N(Rγ0
[x]) but fγ0

(x)rγ0
/∈ N(Rγ0

[x]) for
all 0 6= rγ0

in the ideal of Rγ0
generated by the coefficients of gγ0

(x). Taking
f(x) = (fγ(x)), g(x) = (gγ(x)) such that f(x) and g(x) are the sequences
in R[x] such that fγ(x) = fγ0

(x) for γ = γ0, fγ(x) = 0 for γ 6= γ0, and
gγ(x) = gγ0

(x) for γ = γ0, gγ(x) = 0 for γ 6= γ0. Then f(x)g(x) ∈ N(R[x])
from fγ0

(x)gγ0
(x) ∈ N(Rγ0

[x]). But since R is ideal-π-McCoy, there exists a
nonzero s = (sγ) in the ideal of R generated by the coefficients of g(x) such
that f(x)s ∈ N(R[x]). Note that sγ 6= 0 for γ = γ0 and sγ = 0 for γ 6= γ0
and that sγ0

is in the ideal of Rγ0
generated by the coefficients of gγ0

(x). This
yields fγ0

(x)sγ0
∈ N(Rγ0

[x]), a contradiction.
The proofs of (2) and (3) are much the same as (1).
(4) Let f(x)g(x) ∈ N(I[x]) for polynomials f(x), 0 6= g(x) in I[x]. Since

f(x)g(x) ∈ N(I[x]) ⊆ N(R[x]) and R is ideal-π-McCoy, f(x)r ∈ N(R[x]) for
some 0 6= r in the ideal of R generated by the coefficients of g(x). Since I is an
ideal of R, r ∈ I and f(x)r ∈ N(I[x]). So I is an ideal-π-McCoy ring without
identity.

(5) Let R = Matn(S) for a reduced ring S and n ≥ 2. Then R is not
ideal-π-McCoy by Example 1.3(1). But U2(S) is ideal-π-McCoy by Lemma
1.2(4).

(6) Let R be the ring of quaternions with integer coefficients. Then R is a
domain and clearly ideal-π-McCoy. However for any odd prime integer q, the
ring R/qR is isomorphic to Mat2(Zq) by the argument in [11, Exercise 2A].
Thus R/qR is not ideal-π-McCoy by Example 1.3(1). �

The construction in Example 1.7 also provides an ideal-π-McCoy ring which
has a non-ideal-π-McCoy subring. Let S be a division ring in Example 1.7.
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Then every Rn = Mat2n(S) is not ideal-π-McCoy by Example 1.3(1). But R
is ideal-π-McCoy by the computation in Example 1.7. Note that every Rn is a
subring of R.

We find a kind of subring that inherits the ideal-π-McCoy property against
Proposition 2.1(5).

Corollary 2.2. Let e be a central idempotent of a ring R. Then R is ideal-π-
McCoy if and only if eR and (1− e)R are both ideal-π-McCoy.

Proof. The proof is obtained from Proposition 2.1(1) since R = eR ⊕ (1 −
e)R. �

Concerning the preceding corollary, we write an actual computation to show
the sufficiency. Suppose that eR and (1 − e)R are both ideal-π-McCoy. Let
f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j ∈ R[x] be such that f(x)g(x) ∈

N(R[x]) and g(x) 6= 0. Next set f1(x) = ef(x), f2(x) = (1 − e)f(x) and
g1(x) = eg(x), g2(x) = (1 − e)g(x). Then f1(x)g1(x) = ef(x)g(x) ∈ N(R[x])
and f2(x)g2(x) = (1 − e)f(x)g(x) ∈ N(R[x]). Since g(x) 6= 0, eg(x) 6= 0 or
(1− e)g(x) 6= 0.

Assume g1(x) 6= 0 and g2(x) 6= 0. Since eR (resp. (1−e)R) is ideal-π-McCoy,
there exists r1 6= 0 (resp. r2 6= 0) in the ideal of eR (resp. (1− e)R) generated
by the coefficients of g1(x) (resp. g2(x)) such that f1(x)r1 ∈ N(eR[x]) (resp.
f2(x)r2 ∈ N((1−e)R[x])). Let r = r1+r2. Then r 6= 0 since eR∩(1−e)R = 0,
and r is contained in the ideal of R generated by the coefficients of g(x).
Moreover we have

f(x)r = (f1(x) + f2(x))(r1 + r2) = f1(x)r1 + f2(x)r2 ∈ N(R[x]).

The computations of the cases of (g1(x) 6= 0, g2(x) = 0) and (g1(x) = 0, g2(x) 6=
0) are similar. These imply that R is ideal-π-McCoy.

Theorem 2.3. The class of ideal-π-McCoy rings is closed under direct limits

with injective maps.

Proof. Let D = {Ri, αij} be a direct system of ideal-π-McCoy rings Ri for i ∈ I
and ring homomorphisms αij : Ri → Rj for each i ≤ j satisfying αij(1) = 1,
where I is a directed partially ordered set. Set R = lim

−→
Ri be the direct limit

of D with ιi : Ri → R and ιjαij = ιi, where every ιi is injective. We will show
that R is an ideal-π-McCoy ring. Take a, b ∈ R. Then a = ιi(ai), b = ιj(bj)
for some i, j ∈ I and there is k ∈ I such that i ≤ k, j ≤ k. Define

a+ b = ιk(αik(ai) + αjk(bj)) and ab = ιk(αik(ai)αjk(bj)),

where αik(ai) and αjk(bj) are in Rk. Then R forms a ring with 0 = ιi(0) and
1 = ιi(1).

Now let f(x), g(x) ∈ R[x] be nonzero polynomials such that f(x)g(x) ∈
N(R[x]). There is k ∈ I such that f(x), g(x) ∈ Rk[x] via ιi’s and αij ’s; hence we
get f(x)g(x) ∈ N(Rk[x]). Since Rk is ideal-π-McCoy, there exists 0 6= ck in the
ideal of Rk generated by the coefficients of g(x) such that f(x)ck ∈ N(Rk[x]).
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Put c = ιk(ck). Then f(x)c ∈ N(R[x]) with a nonzero c in the ideal of R
generated by the coefficients of g(x), entailing R being ideal-π-McCoy. �

Write R and Rn as in Example 1.7. Then the direct limit R of Rn’s is
ideal-π-McCoy, but Rn need not ideal-π-McCoy with the help of [15, Theorem
1.4].

The class of ideal-π-McCoy rings is not closed under subrings by Proposition
2.1(5). This is comparable with the following.

Proposition 2.4. Let R be a ring. If R[x] is ideal-π-McCoy over a ring R,

then so is R.

Proof. Suppose that S[t] is the polynomial ring with an indeterminate t over
S = R[x]. We apply the proof of [15, Proposition 2.3]. Let S be ideal-π-McCoy
and suppose that f(x)g(x) ∈ N(R[x]) for nonzero polynomials f(x), g(x) in
R[x]. This can be converted to that f(t)g(t) ∈ N(S[t]) for nonzero polynomials
f(t), g(t) in S[t]. Since S is ideal-π-McCoy, f(t)h(x) ∈ N(S[t]) for some 0 6=
h(x) in the ideal of R[x] generated by the coefficients of g(t), say (f(t)h(x))k =
0. Note that f(t) ∈ R[t]. Here letting h(x) =

∑n
i=0 aix

i (we can set a0 6= 0,

dividing by x if necessary), we get f(t)a0 ∈ N(R[t]) from 0 = (f(t)h(x))k =
(f(t)a0)

k + h1x + · · · + hnkx
nk with h1, . . . , hnk ∈ R[t]. This implies that

f(x)a0 ∈ N(R[x]) and 0 6= a0 in the ideal of R generated by the coefficients of
g(x), showing that R is ideal-π-McCoy. �

In fact, we do not know of any example of an ideal-π-McCoy ring whose
polynomial ring is not ideal-π-McCoy.

Question. Does a ring R being ideal-π-McCoy imply R[x] being ideal-π-
McCoy?

Recall that a regular element means a neither left nor right zero-divisor. A
ring R is called right Ore if given a, b ∈ R with b regular there exist a1, b1 ∈ R
with b1 regular such that ab1 = ba1. It is well-known that R is a right Ore ring
if and only if the classical right quotient ring of R exists.

Theorem 2.5. Let R be a right Ore ring with its classical right quotient ring

Q. Let R be an ideal-π-McCoy ring such that non-regular polynomials in R[x]
are nilpotent. Then Q is ideal-π-McCoy.

Proof. We will use [20, Proposition 2.1.16] freely, and apply the proof of [15,
Theorem 2.1]. Denote the set of all regular elements in R by C(R). Suppose
F (x)G(x) ∈ N(Q[x]) for 0 6= F (x), 0 6= G(x) ∈ Q[x]. Say that (F (x)G(x))k =
0 and (F (x)G(x))k−1 6= 0 for some k ≥ 1. We can write

F (x) =

m∑

i=0

aiu
−1xi = (

m∑

i=0

aix
i)u−1 and G(x) =

n∑

j=0

bjv
−1xj = (

n∑

j=0

bjx
j)v−1

for some ai’s, bj ’s in R and u, v ∈ C(R). Since R is right Ore, there exist

u1, v1 ∈ C(R) for all i’s and j’s such that u−1bj = b′ju
−1
1 and v−1ai = a′iv

−1
1
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for some a′i, b
′

j ∈ R. Next set

f(x) =

m∑

i=0

aix
i, f1(x) =

m∑

i=0

a′ix
i,

g(x) =
n∑

j=0

bjx
j , g1(x) =

n∑

j=0

b′jx
j and

v2 = uv1, u2 = vu1.

Then we have

u−1g(x) = g1(x)u
−1
1 , v−1f(x) = f1(x)v

−1
1 ,

F (x)G(x) = f(x)g1(x)u
−1
2 and

G(x)F (x) = g(x)f1(x)v
−1
2 ,

noting that f(x) 6= 0, g(x) 6= 0, f1(x) 6= 0, and g1(x) 6= 0. Let I and J be the
ideals of Q generated by the coefficients of F (x) and G(x), respectively. Since

ai = aiu
−1u, u−1bju1 = b′j , bj = bjv

−1v, v−1aiv1 = a′i,

we have f(x), f1(x) ∈ I[x] and g(x), g1(x) ∈ J [x]. Note that
∑m

i=0 RaiR ⊆ I,∑m
i=0 Ra′iR ⊆ I,

∑n
j=0 RbjR ⊆ J ,

∑n
j=0 Rb′jR ⊆ J ,

∑m
i=0 Ra′iR ⊆ R, and∑n

j=0 Rb′jR ⊆ R. We will freely use this fact in the following computation. Set

I0 =
∑m

i=0 Ra′iR and J0 =
∑n

j=0 Rb′jR.

Case 1. F (x)G(x) = 0 and G(x)F (x) = 0

Consider F (x)G(x) = 0. Then f(x)g1(x)u
−1
2 = 0 and so f(x)g1(x) = 0.

Since R is ideal-π-McCoy and f(x), g1(x) ∈ R[x], there exists 0 6= α ∈ J0 such
that f(x)α ∈ N(R[x]) ⊆ N(Q[x]). This yields

F (x)uα = f(x)u−1uα = f(x)α ∈ N(Q[x]),

where 0 6= uα ∈ J .
Consider G(x)F (x) = 0. Then g(x)f1(x)v

−1
2 = 0 and so g(x)f1(x) = 0.

Since R is ideal-π-McCoy and g(x), f1(x) ∈ R[x], there exists 0 6= β ∈ I0 such
that g(x)β ∈ N(R[x]) ⊆ N(Q[x]) by the similar argument to above. This yields

G(x)vβ = g(x)v−1vβ = g(x)β ∈ N(Q[x]),

where 0 6= vβ ∈ I. Note vβG(x) ∈ N(Q[x]).

Case 2. F (x)G(x) = 0 and G(x)F (x) 6= 0

Note that G(x)F (x)G(x) = 0 and F (x)G(x)F (x) = 0. Letting H(x) =
G(x)F (x), we have H(x)G(x) = 0. Note 0 6= H(x) ∈ (I ∩ J)[x]. Say H(x) =∑ℓ

s=0 csw
−1xs = (

∑ℓ
s=0 csx

s)w−1 with cs’s in R and w ∈ C(R).
Consider H(x)G(x) = 0. Since R is right Ore, there exists w1 ∈ C(R)

for all ℓ’s such that w−1bj = djw
−1
1 for some dj ∈ R. Letting h(x) =
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∑ℓ
s=0 csx

s and g2(x) =
∑n

j=0 djx
j , we have H(x)G(x) = h(x)g2(x)(vw1)

−1

and so h(x)g2(x) = 0. Note

w−1G(x) = w−1g(x)v−1 = g2(x)w
−1
1 v−1 = g2(x)(vw1)

−1.

Since R is ideal-π-McCoy and h(x), g2(x)∈R[x], there exists 0 6=γ∈
∑ℓ

s=0 RcsR
such that γg2(x) ∈ N(R[x]) ⊆ N(Q[x]). Note that γ ∈ I∩J , g2(x)γ ∈ N(Q[x])
and

w−1G(x)vw1γ = g2(x)(vw1)
−1vw1γ = g2(x)γ ∈ N(Q[x]).

This yields G(x)vw1γw
−1 ∈ N(Q[x]) with 0 6= vw1γw

−1 ∈ I ∩ J .
Next since F (x)G(x) = 0, the same computation as in Case 1 is applicable

to find nonzero q ∈ J such that F (x)q ∈ N(Q[x]).

Case 3. F (x)G(x) 6= 0 and G(x)F (x) = 0

Note that F (x)G(x)F (x) = 0 and G(x)F (x)G(x) = 0. Letting K(x) =
F (x)G(x), we have K(x)F (x) = 0 with 0 6= K(x) ∈ (I ∩ J)[x]. Note 0 6=

K(x) ∈ (I ∩ J)[x]. Say K(x) =
∑t

s=0 esz
−1xs = (

∑t
s=0 esx

s)z−1 with es’s in
R and z ∈ C(R).

SinceR is right Ore, there exists z1 ∈ C(R) for all i’s such that z−1ai = yiz
−1
1

for some yi ∈ R. Let k(x) =
∑t

s=0 esx
s and f2(x) =

∑m
i=0 yix

i. Then k(x) 6= 0
and we have K(x)F (x) = k(x)f2(x)(uz1)

−1, entailing k(x)f2(x) = 0. Note

z−1F (x) = z−1f(x)u−1 = f2(x)z
−1
1 u−1 = f2(x)(uz1)

−1.

Since R is ideal-π-McCoy and k(x), f2(x)∈R[x], there exists 0 6=δ∈
∑t

s=0 ResR
such that δf2(x) ∈ N(R[x]) ⊆ N(Q[x]). Note that δ ∈ I ∩J , f2(x)δ ∈ N(Q[x])
and

z−1F (x)uz1δ = f2(x)(uz1)
−1uz1δ = f2(x)δ ∈ N(Q[x]).

This yields F (x)uz1δz
−1 ∈ N(Q[x]) with 0 6= uz1δz

−1 ∈ I ∩ J .
Next since G(x)F (x) = 0, the same computation as in Case 1 is applicable

to find nonzero p ∈ I such that pG(x) ∈ N(Q[x]).

Case 4. F (x)G(x) 6= 0 and G(x)F (x) 6= 0

Suppose F (x)G(x) 6= 0 and G(x)F (x) 6= 0. Then there exists k ≥ 2 such
that (F (x)G(x))k = 0 and (F (x)G(x))k−1 6= 0.

Since R is right Ore, u−1
2 (F (x)G(x))k−1 = A(x)u−1

3 for some A(x) ∈ R[x]
and some u3 ∈ C(R). Here A(x) is also nonzero because both (F (x)G(x))k−1

is nonzero. Note that A(x) ∈ (I ∩ J)[x] and

f(x)g1(x)A(x) = f(x)g1(x)u
−1
2 (F (x)G(x))k−1u3 = (F (x)G(x))ku3 = 0.

Since R is ideal-π-McCoy, there exists nonzero β in the ideal of R generated
by the coefficients of A(x) such that f(x)g1(x)β ∈ N(R[x]). Note β ∈ I ∩ J .
Moreover g1(x)β is nilpotent by hypothesis. Then, from

g1(x)β = g1(x)u
−1
2 u2β = u−1g(x)v−1u2β = u−1G(x)u2β,

we have G(x)u2βu
−1 ∈ N(Q[x]) with 0 6= u2βu

−1 ∈ I ∩ J .
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By Cases 1, 2, 3 and 4, we have that

β′G(x) ∈ N(Q[x]) for some 0 6= β′ ∈ I.

Therefore Q is ideal-π-McCoy by help of Proposition 1.1(1). �

The following has a similar structure to the case of classical quotient rings.

Proposition 2.6. Let R be a ring and ∆ be a multiplicatively closed subset of

R consisting of central regular elements. Then

(1) R is ideal-π-McCoy if and only if ∆−1R is.

(2) R is strongly right McCoy if and only if ∆−1R is.

Proof. The necessity follows from the proof of Theorem 2.5. Let S = ∆−1R
and put f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j be nonzero polynomials in

R[x].
(1) Suppose that S is ideal-π-McCoy and f(x)g(x) ∈ N(R[x]). Since S is

ideal-π-McCoy, f(x)(cw−1) ∈ N(S[x]) for some nonzero cw−1 in the ideal of S
generated by the coefficients of g(x). Note that c 6= 0 and c is also contained
in the ideal of S generated by the coefficients of g(x). But since w is central,
we get f(x)c ∈ N(R[x]), concluding that R is ideal-π-McCoy.

(2) is similar to the proof of (1). �

Corollary 2.7. Let R be a ring. Then R[x] is ideal-π-McCoy (resp. strongly

right McCoy) if and only if R[x;x−1] is.

Proof. Note that ∆ = {1, x, x2, . . .} is a multiplicatively closed subset of R[x]
consisting of central regular elements. So Proposition 2.6 gives the proof since
R[x;x−1] = ∆−1R[x]. �

Let R be an algebra (with or without identity) over a commutative ring S.
The Dorroh extension of R by S is the Abelian group R⊕S with multiplication
given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ R and si ∈ S.

Theorem 2.8. Let R be an algebra over a commutative domain S, and D be

the Dorroh extension of R by S. Then

(1) R is ideal-π-McCoy if and only if D is.

(2) R is strongly right McCoy if and only if D is.

(3) R is π-McCoy if and only if D is.

Proof. Note that s ∈ S is identified with s1 ∈ R and so R = {r+s | (r, s) ∈ D}
and S is considered as a subring of R. Let F (x) = (f1(x), f2(x)) and G(x) =
(g1(x), g2(x)) be any nonzero polynomials in D[x] where f1(x) =

∑m
i=1 aix

i,
g1(x) =

∑n
j=1 bjx

j ∈ R[x] and f2(x) =
∑m

i=1 six
i, g2(x) =

∑n
j=1 tjx

j ∈ S[x].

(1) Suppose that R is ideal-π-McCoy. Let (F (x)G(x))k = 0 and

(F (x)G(x))k−1 6= 0

for some k ≥ 1. Then (f2(x)g2(x))
k = 0 and so we have f2(x) = 0 or g2(x) = 0

since S[x] is a domain.
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(i) If f2(x) = 0, then we have f1(x)(g1(x) + g2(x)) ∈ N(R[x]) from 0 =
(F (x)G(x))k = (f1(x)(g1(x) + g2(x)), 0)

k. Since R is ideal-π-McCoy, there
exists a nonzero r =

∑
u,v ruv

(bu+tu)r
′

uv
∈
∑n

j=1 R(bj+tj)R such that f1(x)r ∈

N(R[x]). Then

F (x)(r, 0) ∈ N(D[x]),

where 0 6= (r, 0) =
∑

u,v(ruv
, 0)(bu, tu)(r

′

uv
, 0) ∈

∑n
j=1 D(bj , tj)D, entailing

that D is ideal-π-McCoy.
(ii) Let g2(x) = 0. By the similar argument to (i), we have (f1(x) +

f2(x))g1(x) ∈ N(R[x]). Since R is ideal-π-McCoy, there exists a nonzero
r =

∑
u,v ruv

bur
′

uv
∈

∑n
j=0 RbjR such that (f1(x) + f2(x))r ∈ N(R[x]).

Then F (x)(r, 0) ∈ N(D[x]), where 0 6= (r, 0) =
∑

u,v(ruv
, 0)(bu, 0)(r

′

uv
, 0) ∈∑n

j=0 D(bj , 0)D, showing that D is ideal-π-McCoy.

By (i) and (ii), D is ideal-π-McCoy.
Conversely, suppose that D is ideal-π-McCoy. Let f(x) =

∑m
i=0 aix

i and
g(x) =

∑n
j=0 bjx

j in R[x] be nonzero polynomials with f(x)g(x) ∈ N(R[x]),

say (f(x)g(x))k = 0 but (f(x)g(x))k−1 6= 0 for some k ≥ 1. We take F (x) =
(f(x), 0) andG(x) = (g(x), 0) inD[x]. Then (F (x)G(x))k = 0 and so F (x)G(x)
∈ N(D[x]). Since D is ideal-π-McCoy, there exists a nonzero (r, s) =

∑
u,v(ruv

,

suv
)(bu, 0)(r

′

uv
, s′uv

) ∈
∑n

j=0 D(bj, 0)D with F (x)(r, s) ∈ N(D[x]). Since (r, s)

= (
∑

u,v(ruv
+ suv

)bu(r
′

uv
+ s′uv

), 0), we have 0 6= r =
∑

u,v(ruv
+ suv

)bu(r
′

uv
+

s′uv
) ∈

∑n
j=0 RbjR and f(x)r = 0. Therefore R is ideal-π-McCoy.

(2) and (3) are similar to the proof of (1). �

Finally, we characterize the class of noncommutative ideal-π-McCoy rings of
minimal order. | − | means the cardinality.

Proposition 2.9. Let R be an ideal-π-McCoy ring. If R is a noncommutative

ideal-π-McCoy ring of minimal order, then R is of order 8 and is isomorphic

to U2(Z2).

Proof. Let R be a noncommutative ideal-π-McCoy of minimal order. Then
|R| ≥ 23 by [9, Theorem]. If |R| = 23, then R is isomorphic to U2(Z2) by [9,
Proposition]. But U2(Z2) is an ideal-π-McCoy ring by Lemma 1.2(4). This
yields that R is of order 8 and is isomorphic to U2(Z2). �
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