MCCOY CONDITION ON IDEALS OF COEFFICIENTS

JEOUNG SOO CHEON, CHAN HUH, TAI KEUN KWAK, AND YANG LEE

ABSTRACT. We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal- π -McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal- π -McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal- π -McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal- π -McCoy rings by examining various sorts of ordinary ring extensions.

1. Ideal- π -McCoy rings

Throughout this note every ring is associative with identity unless otherwise stated. Let R be a ring and we use R[x] to denote the polynomial ring with an indeterminate x over R. Denote the n by n full matrix ring over R by $\mathrm{Mat}_n(R)$ and the n by n upper (resp. lower) triangular matrix ring over R by $U_n(R)$ (resp. $U_n(R)$). Use $U_n(R)$ for the matrix with $U_n(R)$ and elsewhere $U_n(R)$ and $U_n(R)$ denote the set of integers and the ring of integers modulo $U_n(R)$ and $U_n(R)$ denote the prime radical and the set of all nilpotent elements in $U_n(R)$ denote the prime radical and the set of all nilpotent elements in $U_n(R)$ denote the prime radical and the set of all nilpotent elements in $U_n(R)$ denote the prime radical and the set of

McCoy [21, Theorem 2] showed the following fact in 1942:

$$f(x)g(x) = 0$$
 implies $f(x)r = 0$ for some nonzero $r \in R$,

where f(x) and $0 \neq g(x)$ are polynomials over a commutative ring R. Based on this result, Nielsen [22] in 2006 called a (possibly noncommutative) ring R (possibly without identity) right McCoy when the equation f(x)g(x) = 0 implies f(x)r = 0 for some nonzero $r \in R$, where $f(x), 0 \neq g(x)$ are polynomials in R[x]. Left McCoy rings are defined similarly. If a ring is both left and right McCoy, then the ring is called a McCoy ring. Nielsen [22, Section 3 and Section 4] showed that the McCoy condition is not left-right symmetric.

Received April 10, 2012; Revised April 19, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 16D25,\ 16S36.$

Key words and phrases. ideal- π -McCoy ring, strongly McCoy ring, π -McCoy ring, polynomial ring, matrix ring, the classical right quotient ring.

It is well-known that the set of nilpotent elements forms an ideal in any commutative ring. This property is also possessed by the following kinds of noncommutative rings. Given a ring R, Shin [24, Proposition 1.11] proved that $N_*(R) = N(R)$ if and only if every minimal prime ideal of R is completely prime. Birkenmeier et al. [6] called a ring R 2-primal when $N_*(R) = N(R)$. Note that R is 2-primal if and only if $R/N_*(R)$ is reduced. A well-known property between the commutativity and the 2-primal condition is the insertionof-factors-property (or simply IFP). Due to Bell [5], a ring R is called IFP if ab = 0 implies aRb = 0 for $a, b \in R$. IFP rings are 2-primal by [24, Theorem 1.5]. Following Cohn [8], a ring R is called reversible if ab = 0 implies ba = 0 for $a,b \in R$. Anderson and Camillo [2], observing the rings whose zero products commute, used the term ZC_2 for what is called reversible. A ring R is called reduced if N(R) = 0. Reduced rings are reversible via a simple computation, and commutative rings are clearly reversible. Every reversible ring is McCoy by [22, Theorem 2], and hence both commutative rings and reduced rings are McCoy. It is evident that reversible rings are IFP. However IFP rings need not be right McCoy by [22, Section 3]. There exist right McCoy rings that are not IFP with the help of [19, Theorem 2] and [17, Example 1.3].

According to Hong et al. [12], a ring R (possibly without identity) is called strongly right McCoy provided that f(x)g(x) = 0 implies f(x)r = 0 for some nonzero r in the right ideal of R generated by the coefficients of g(x), where f(x) and g(x) are nonzero polynomials in R[x]. Strongly left McCoy rings are defined similarly. If a ring is both strongly left and strongly right McCoy, then the ring is called a strongly McCoy ring. Reversible rings are strongly McCoy by [12, Theorem 1.6] or the proof of Nielsen [22, Theorem 2] and strongly McCoy rings are clearly McCoy. A ring is usually called right duo if each right ideal is two-sided. It is easily checked that right duo rings are IFP. Right duo rings are strongly right McCoy by the proof of [7, Theorem 8.2], and moreover we can find more concrete shape of right annihilators in the proof of [12, Theorem 1.11].

Due to Jeon et al. [15], a ring R (possibly without identity) is called π -McCoy if $f(x)g(x) \in N(R[x])$ implies $f(x)r \in N(R[x])$ for some nonzero $r \in R$, where f(x) and g(x) are nonzero polynomials in R[x]. The class of π -McCoy rings contains McCoy rings by [15, Proposition 1.1(2)] and 2-primal rings (hence reversible rings, right duo rings and IFP rings) by [15, Proposition 1.7]. Next we consider the π -McCoy in conjunction with the nilpotency.

Let R be a ring and $f(x), 0 \neq g(x) \in R[x]$ and J be the ideal of R generated by the coefficients of g(x). In this situation consider the following condition:

(*) $f(x)g(x) \in N(R[x])$ implies $f(x)a \in N(R[x])$ for some nonzero $a \in J$.

Recall that an element is called *right* (resp. *left*) *regular* if its right (resp. *left*) annihilator is zero. An element is called *regular* if it is both *left* and right regular.

Proposition 1.1. (1) The condition (*) is left-right symmetric.

(2) Let R be a ring over which non-regular polynomials are nilpotent. If R is strongly McCoy, then R satisfies the condition (*).

Proof. (1) Let R be a ring satisfying the condition (*), and we will show that R satisfies the left version of the condition (*). Say $f(x)g(x) \in N(R[x])$ for $f(x), g(x) \in R[x]$ with $f(x) \neq 0$. From $f(x)g(x) \in N(R[x])$ we also get $g(x)f(x) \in N(R[x])$. Since R satisfies the condition (*), $g(x)b \in N(R[x])$ for some nonzero b in the ideal of R generated by the coefficients of f(x). This yields $bg(x) \in N(R[x])$. The converse can be proved by changing the roles of f(x) and g(x).

(2) Suppose that R is a strongly McCoy ring whose non-regular polynomials are nilpotent. Let $f(x)g(x) \in N(R[x])$ for $f(x), g(x) \in R[x]$. If f(x) = 0 or g(x) = 0, then R satisfies both the condition (*) and the left version of the condition (*). So we suppose that $f(x) \neq 0$ and $g(x) \neq 0$. We apply the proof of [15, Proposition 1.1(2)]. Let $(f(x)g(x))^n = 0$ and $(f(x)g(x))^{n-1} \neq 0$ for some $n \geq 1$. Let I and J be the ideals of R generated by the coefficients of f(x) and g(x), respectively.

Case 1.
$$f(x)g(x) = 0$$
 and $g(x)f(x) = 0$

Since R is strongly McCoy, there exist $0 \neq a \in J$ and $0 \neq b \in I$ such that f(x)a = 0 and bg(x) = 0.

Case 2.
$$f(x)g(x) = 0$$
 and $g(x)f(x) \neq 0$

Since R is strongly McCoy, there exist $0 \neq a \in J$ and $0 \neq b \in I$ such that f(x)a = 0 and bg(x) = 0.

Case 3.
$$f(x)g(x) \neq 0$$
 and $g(x)f(x) = 0$

Since R is strongly McCoy, there exist $0 \neq a \in J$ and $0 \neq b \in I$ such that af(x) = 0 (hence $f(x)a \in N(R[x])$) and g(x)b = 0 (hence $bg(x) \in N(R[x])$).

Case 4.
$$f(x)g(x) \neq 0$$
 (then $n \geq 2$) and $g(x)f(x) \neq 0$

Recall $(f(x)g(x))^{n-1} \neq 0$. From $(f(x)g(x))(f(x)g(x))^{n-1} = 0$, there exists $0 \neq b \in I \cap J$ such that f(x)g(x)b = 0 since R is strongly right McCoy. So $g(x)b \in N(R[x])$ by the hypothesis, entailing $bg(x) \in N(R[x])$.

By Cases 1, 2, 3 and 4, we have that

$$bg(x) \in N(R[x])$$
 for some $0 \neq b \in I$.

Thus R satisfies the condition (*) by (1).

As we see in the proof of Proposition 1.1(2), the condition (*) is satisfied automatically when f(x) = 0 or g(x) = 0. So we will examine the condition (*), assuming that $f(x) \neq 0$ and $g(x) \neq 0$.

The strongly McCoy condition is not left-right symmetric by help of [16, Example 1.8]. Based on Proposition 1.1, a ring will be called ideal- π -McCoy if it satisfies the condition (*). Ideal- π -McCoy rings are clearly π -McCoy but

the converse need not hold by Example 1.4(3) below. Note that there exists an ideal- π -McCoy ring which is not strongly McCoy by Example 1.3(2),(3) to follow.

Given a ring R and $n \geq 2$, consider the subrings $D_n(R) = \{(m_{ij}) \in$ $U_n(R) \mid m_{11} = \cdots = m_{nn}$ and $V_n(R) = \{m = (m_{ij}) \in D_n(R) \mid m_{st} = m_{ij}\}$ $m_{(s+1)(t+1)}$ for $s=1,\ldots,n-2$ and $t=2,\ldots,n-1$ of $U_n(R)$. For any set M of matrices over a ring R, M^T denotes the set of all transposes of matrices in

Lemma 1.2. (1) Let R be a ring with an essential ideal I of R such that $I[x] \subseteq N(R[x])$. Then R is ideal- π -McCoy.

- (2) Let R be a ring with a nilpotent essential ideal. Then $Mat_n(R)$ is ideal- π -McCoy for $n \geq 1$.
- (3) Let R be a ring with an essential ideal whose finitely generated subrings are nilpotent. Then $\operatorname{Mat}_n(R)$ is ideal- π -McCoy for $n \geq 1$.
 - (4) Both $U_n(A)$ and $L_n(A)$ are ideal- π -McCoy for any ring A and $n \geq 2$.
 - (5) Both $D_n(A)$ and $D_n(A)^T$ are ideal- π -McCoy for any ring A and $n \ge 2$. (6) Both $V_n(A)$ and $V_n(A)^T$ are ideal- π -McCoy for any ring A and $n \ge 2$.
- (7) The factor ring $R[x]/\langle x^n \rangle$ is ideal- π -McCoy for any $n \geq 2$, where $\langle x^n \rangle$ is a two-sided ideal of R[x] generated by x^n .
- (8) Let A, B be any rings and ${}_{A}M_{B}$ be an (A,B)-bimodule such that $aM \neq 0$ and $Mb \neq 0$ for $0 \neq a \in A$ and $0 \neq b \in B$. Then $\begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ is ideal- π -McCoy.
- *Proof.* (1) Let $f(x)g(x) \in N(R[x])$ for nonzero polynomials f(x), g(x) in R[x]and let J be the ideal of R generated by the coefficients of g(x). Since I is an essential ideal, we have $I \cap J \neq 0$. If $f(x) \in (I \cap J)[x]$, then $f(x)r \in N(R[x])$ for all $r \in R$. If $f(x) \notin (I \cap J)[x]$, then $f(x)s \in N(R[x])$ for all nonzero $s \in I \cap J$. Thus R is ideal- π -McCoy.
- (2) Let I be a nilpotent essential ideal of R. Then $Mat_n(I)$ is a nilpotent essential ideal of $\operatorname{Mat}_n(R)$. Clearly $\operatorname{Mat}_n(I)[x] \subseteq N(\operatorname{Mat}_n(R)[x])$. Thus $\operatorname{Mat}_n(R)$ is ideal- π -McCoy by (1).
- (3) Let I be an essential ideal whose finitely generated subrings are nilpotent. Then $\operatorname{Mat}_n(I)$ is also an essential ideal of $\operatorname{Mat}_n(R)$. Let $f(x) = (a(0)_{ij}) +$ $(a(1)_{ij})x + \cdots + (a(n)_{ij})x^n \in \operatorname{Mat}_n(I)[x]$ and S be the subring of I generated by $a(k)_{ij}$'s for $k = 0, \ldots, n$ and $i, j = 1, \ldots, n$. By hypothesis, S is nilpotent and this yields that f(x) is nilpotent. Thus $Mat_n(R)$ is ideal- π -McCoy by (1).
 - (4) Let A be any ring and $R = U_n(A)$ for $n \ge 2$. Then

$$I = \{(m_{ij}) \in R \mid m_{ii} = 0 \text{ for all } i = 1, \dots, n\}$$

is an essential ideal of R such that $I^n = 0$. Thus R is ideal- π -McCoy by (2).

The proofs of (5), (6), (8) are almost same as (4), noting that $\begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ is a nilpotent essential ideal of $\begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$.

(6) \Leftrightarrow (7) follows from the well-known fact that $V_n(R) \cong R[x]/\langle x^n \rangle$. **Question.** Is a ring R ideal- π -McCoy when $\mathrm{Mat}_n(R)$ $(U_n(R))$ is ideal- π -McCoy?

Given a ring R and an (R,R)-bimodule M, the trivial extension of R by M is the ring $T(R,M)=R\oplus M$ with the usual addition and the following multiplication: $(r_1,m_1)(r_2,m_2)=(r_1r_2,r_1m_2+m_1r_2)$. This is isomorphic to the ring of all matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r\in R$ and $m\in M$ and the usual matrix operations are used.

Hence, the trivial extension T(R,R) of any ring R is an ideal- π -McCoy ring by the similar argument to Lemma 1.2(4).

We will use freely the fact that ideal- π -McCoy rings are π -McCoy.

- **Example 1.3.** (1) Let R be a reduced ring. Then $\operatorname{Mat}_n(R)$ is not π -McCoy when $n \geq 2$ by [15, Theorem 1.4]. Thus $\operatorname{Mat}_n(R)$ cannot be ideal- π -McCoy over a reduced ring R.
- (2) There exist many kinds of rings that satisfy the hypothesis of Lemma 1.2(2). For example, \mathbb{Z}_{p^m} ($m \geq 2$) for a prime p has an essential nilpotent ideal $p\mathbb{Z}_{p^m}$. So $R = \operatorname{Mat}_n(\mathbb{Z}_{p^m})$ ($n \geq 1$, $m \geq 2$) is ideal- π -McCoy by Lemma 1.2(2). Note that R is neither left nor right McCoy by [15, Proposition 1.6] and so R is not strongly McCoy.
- (3) By Lemma 1.2(4), we can always construct an ideal- π -McCoy ring that is neither left nor right McCoy. $U_n(A)$ (for any ring A and $n \geq 2$) is ideal- π -McCoy but neither left nor right McCoy by [15, Example 1.3] and hence R is not strongly McCoy.

Recall that the class of π -McCoy rings contains McCoy rings and ideal- π -McCoy rings. Moreover the properties of the McCoy and the ideal- π -McCoy are independent of each other by the following.

Example 1.4. (1) (non-semiprime case) There exist ideal- π -McCoy rings that are not one-sided McCoy by Example 1.3(2),(3).

- (2) (semiprime case) There exists an ideal- π -McCoy ring that is not right McCoy, applying the proof of [14, Theorem 2.2]. Let S be a reduced ring, n be a positive integer and R_n be the 2^n by 2^n upper triangular matrix ring over S. Define a map $\sigma: R_n \to R_{n+1}$ by $A \mapsto \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$, then R_n can be considered as a subring of R_{n+1} via σ (i.e., $A = \sigma(A)$ for $A \in R_n$). Notice that $D = \{R_n, \sigma_{nm}\}$, with $\sigma_{nm} = \sigma^{m-n}$ whenever $n \leq m$, is a direct system over $\{1, 2, \ldots\}$. Set $R = \varinjlim_{n} R_n$ be the direct limit of D. Then R is a semiprime ring by [14, Theorem 2.2], and R is neither left nor right McCoy by [15, Example 1.3]. Moreover R is an ideal- π -McCoy ring by Theorem 2.3 to follow since every R_n is ideal- π -McCoy by Lemma 1.2(4). As another proof, consider the ideal $I = \{A \in R \mid \text{ the diagonal entries of } A \text{ are zero} \}$ of R. Then I is an essential ideal of R whose finitely generated subrings are nilpotent since the subring is contained in $U_{2k}(S)$ for some $k \geq 1$. So R is ideal- π -McCoy by Lemma 1.2(3).
- (3) There exists a McCoy ring that is not ideal- π -McCoy. Let I be an infinite indexing set and R_i be a ring for all $i \in I$. Let $R = \sum_{i \in I} R_i$ be the direct

sum of R_i 's. Suppose that R_j is not ideal- π -McCoy for some $j \in I$. Then by Proposition 2.1(2), to follow, R is not ideal- π -McCoy. But R is McCoy by [7, Proposition 4.3] and thus R is π -McCoy by [15, Proposition 1.1(2)].

McCoy rings are π -McCoy, but π -McCoy rings need not be ideal- π -McCoy by Example 1.4(3). We will see another π -McCoy ring but not ideal- π -McCoy in the following.

Example 1.5. Let $R = \operatorname{Mat}_2(\mathbb{Z}) \bigoplus \operatorname{Mat}_2(\mathbb{Z}_4)$. Then $\operatorname{Mat}_2(\mathbb{Z})$ is not π -McCoy by [15, Theorem 1.4] but $\operatorname{Mat}_2(\mathbb{Z}_4)$ is non-semiprime with $N_*(\operatorname{Mat}_2(\mathbb{Z}_4)) = \operatorname{Mat}_2(2\mathbb{Z}_4)$; hence R is π -McCoy by [15, Proposition 2.7]. Note that $\operatorname{Mat}_2(\mathbb{Z})$ is not ideal- π -McCoy by Example 1.3(1), and so R is not ideal- π -McCoy by Proposition 2.1(1) to follow.

For any polynomial f(x) in R[x], let $C_{f(x)}$ denote the set of all coefficients of f(x). In [23], Rege and Chhawchharia called a ring R Armendariz if whenever any polynomials $f(x), g(x) \in R[x]$ satisfy f(x)g(x) = 0, then ab = 0 for all $a \in C_{f(x)}$ and $b \in C_{g(x)}$. This nomenclature was used by them since it was Armendariz [4, Lemma 1] who initially showed that a reduced ring always satisfies this condition. The class of 2-primal rings and the class of Armendariz rings don't imply each other by [23, Example 3.2] and [3, Example 4.8].

Proposition 1.6. (1) Armendariz rings are ideal- π -McCoy.

(2) 2-primal rings are ideal- π -McCoy.

Proof. (1) Note that R is Armendariz if and only if R[x] is, by [1, Theorem 2]. Let R be Armendariz. Suppose that $f(x)g(x) \in N(R[x])$ for nonzero polynomials f(x), g(x) in R[x]. By [3, Corollary 5.2] and [3, Proposition 2.7], we have $ab \in N(R)$ for all $a \in C_{f(x)}$ and $b \in C_{g(x)}$ and so $f(x)b' \in N(R)[x] = N(R[x])$ for some $0 \neq b' \in C_{g(x)}$ because $g(x) \neq 0$. Thus R is ideal- π -McCoy.

(2) Note that R[x] over a 2-primal ring R is 2-primal by [6, Proposition 2.6], and hence N(R[x]) = N(R)[x]. Let R be a 2-primal ring. Then $R[x]/N(R)[x] \cong (R/N(R))[x]$ is reduced and N(R[x]) = N(R)[x]. Let $f(x)g(x) \in N(R[x]) = N(R)[x]$ for nonzero polynomials f(x), g(x) in R[x]. Since (R/N(R))[x] is reduced and so Armendariz, $ab \in N(R)$ for all $a \in C_{f(x)}$ and $b \in C_{g(x)}$. By the same argument to the proof of (1), we can show that R is ideal- π -McCoy. \square

The converse of Proposition 1.6(1) does not hold with the help of Example 1.7 to follow. Proposition 1.6(2) implies that 2-primal rings are π -McCoy [15, Proposition 1.7], since ideal- π -McCoy rings are π -McCoy, and the converse of Proposition 1.6(2) need not hold. Let R be the ring in Example 1.4(2). Then R is an ideal- π -McCoy ring, but not 2-primal by [13, Example 1.2].

As a generalization of Armendariz rings, Antoine [3] called a ring R nil-Armendariz if $ab \in N(R)$ for all $a \in C_{f(x)}$ and $b \in C_{g(x)}$ whenever two polynomials $f(x), g(x) \in R[x]$ satisfy $f(x)g(x) \in N(R)[x]$. Nil-Armendariz rings contain both 2-primal rings and Armendariz rings, but each converse does not

hold by [3, Example 4.8 and Example 4.9]. Hence, we raise the following question:

Question. Is a ring R ideal- π -McCoy if R is nil-Armendariz?

Recall that a ring R is called (von Neumann) regular if for each $a \in R$ there exists $x \in R$ such that a = axa. Observe that a regular ring R is Armendariz if and only if R is nil-Armendariz if and only if R is 2-primal by [18, Theorem 20].

A ring is called Abelian if every idempotent is central. Ideal- π -McCoy rings need not be Abelian as can be seen by $U_n(A)$ for $n \geq 2$ and any ring A. Abelian rings are not π -McCoy by [15, Example 1.9] and so not ideal- π -McCoy. Note that a ring R is Abelian regular if and only if R is reduced regular [10, Theorem 3.2]. Consequently a regular ring R is reduced if and only if R is reversible if and only if R is Abelian if and only if R is 2-primal. Since the class of ideal- π -McCoy rings contains both Armendariz rings and 2-primal rings, one may conjecture that regular ideal- π -McCoy rings are Abelian (hence reduced). However the following provides a negative answer.

Example 1.7. We use the ring in [15, Example 1.10]. Let S be a regular ring, n be a positive integer, and R_n be the 2^n by 2^n full matrix ring over S. Define a map $\sigma: R_n \to R_{n+1}$ by $A \mapsto \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$, then R_n can be considered as a subring of R_{n+1} via σ (i.e., $A = \sigma(A)$ for $A \in R_n$). Notice that $D = \{R_n, \sigma_{nm}\}$, with $\sigma_{nm} = \sigma^{m-n}$ whenever $n \leq m$, is a direct system over $I = \{1, 2, \ldots\}$. Set $R = \varinjlim R_n$ be the direct limit of D. Then R is regular since every R_n is regular, but not reduced.

Let $f(x)g(x) \in N(R[x])$ for $0 \neq f(x), 0 \neq g(x) \in R[x]$. Then there exists $k \geq 1$ such that $f(x), g(x) \in R_k[x]$. Since $g(x) \neq 0$, there exists a nonzero coefficient of g(x), say $(a_{ij}) \neq 0$ with $a_{pq} \neq 0$. So the ideal of R generated by the coefficients of g(x) contains the matrix

$$(b_{st}) = E_{1p}(a_{ij})E_{q2^{k+1}}$$

in R_{k+1} such that the $(1, 2^{k+1})$ -entry of (b_{st}) is a_{pq} and other entries of (b_{st}) are all zero. Thus $(f(x)(b_{st}))^{2^{k+1}} = 0$ and this implies that R is ideal- π -McCoy.

A ring R is called directly finite if ab=1 implies ba=1 for $a,b\in R$. Clearly Abelian rings are directly finite. Both strongly McCoy rings and 2-primal rings are directly finite by help of [6, Proposition 2.10] and [7, Theorem 5.2]. So one may conjecture that ideal- π -McCoy rings are directly finite. However the following erases the possibility.

Example 1.8. We use the ring and argument in [15, Example 1.8]. Let F be a field and \mathbb{V} be an infinite dimensional vector space over F with a basis $\{v_1, v_2, \ldots\}$. Consider the endomorphism ring $R = \operatorname{End}_F(\mathbb{V})$ and define $f, g \in R$ such that $fv_1 = 0, fv_j = v_{j-1}$ for $j = 2, 3, \ldots$ and $gv_i = v_{i+1}$ for $i = 1, 2, \ldots$. Then fg = 1 but $gf \neq 1$. Now consider $U_n(R)$ for $n \geq 2$. Then $U_n(R)$ is

ideal- π -McCoy by Lemma 1.2(4). Take $a=(a_{ij})$ and $b=(b_{ij})$ in $U_n(R)$ such that $a_{ii}=f$ for all i, elsewhere zero, and $b_{ii}=g$ for all i, elsewhere zero. Then ab=1 but $ba \neq 1$; hence $U_n(R)$ is not directly finite.

The following is a similar result to [16, Proposition 2.1].

Proposition 1.9. Let R be an ideal- π -McCoy ring and suppose that $f_1(x), \ldots, f_n(x) \in R[x]$ are such that $f_1(x) \cdots f_n(x) \in N(R[x])$ and $f_i(x) \neq 0$ for all $i \in \{2, \ldots, n\}$. Then there exists a nonzero r_i in the ideal of R generated by the coefficients of $f_i(x)$ in R such that

$$f_1(x) \cdots f_{n-1}(x) r_n, \dots, f_1(x) f_2(x) r_3 \cdots r_n, f_1(x) r_2 r_3 \cdots r_n \in N(R[x])$$

for $i = 2, \dots, n$.

Proof. Suppose that R is ideal- π -McCoy. Since $(f_1(x) \cdots f_{n-1}(x)) f_n(x) \in N(R[x])$, there exists a nonzero r_n in the ideal of R generated by the coefficients of $f_n(x)$ such that $(f_1(x) \cdots f_{n-1}(x)) r_n \in N(R[x])$. Hence we get $r_n(f_1(x) \cdots f_{n-1}(x)) \in N(R[x])$. Since $r_n(f_1(x) \cdots f_{n-1}(x)) \in N(R[x])$, there exists a nonzero r_{n-1} in the ideal of R generated by the coefficients of $f_{n-1}(x)$, entailing $r_{n-1}r_n(f_1(x) \cdots f_{n-2}(x)) \in N(R[x])$.

Proceeding in this manner, we finally obtain $r_2 \cdots r_{n-1} r_n f_1(x) \in N(R[x])$ and this yields

$$f_1(x)r_2\cdots r_{n-1}r_n\in N(R[x]),$$

where r_i is a nonzero element in the ideal of R generated by the coefficients of $f_i(x)$ for $i=2,\ldots,n$.

When we apply this proposition we should proceed our computation for each of $\{r_n, \ldots, r_3 \cdots r_n, r_2 r_3 \cdots r_n\}$ to be nonzero.

2. Examples of ideal- π -McCoy rings

In this section we examine the ideal- π -McCoy property in various kinds of ordinary ring extensions.

Proposition 2.1. Let Γ be an index set and R_{γ} be a ring for each $\gamma \in \Gamma$.

- (1) The direct product $R = \prod_{\gamma \in \Gamma} R_{\gamma}$ is ideal- π -McCoy if and only if R_{γ} is ideal- π -McCoy for all $\gamma \in \Gamma$.
- (2) The direct sum $R = \sum_{\gamma \in \Gamma} R_{\gamma}$ (possibly without identity) is ideal- π -McCoy if and only if R_{γ} is ideal- π -McCoy for all $\gamma \in \Gamma$.
- (3) Let R be the subring of $\prod_{\gamma \in \Gamma} R_{\gamma}$ generated by $\sum_{\gamma \in \Gamma} R_{\gamma}$ and $1_{\prod_{\gamma \in \Gamma} R_{\gamma}}$. Then R is ideal- π -McCoy if and only if R_{γ} is ideal- π -McCoy for all $\gamma \in \Gamma$.
- (4) Let R be an ideal- π -McCoy ring. If I is a proper right or left ideal of R, then I is an ideal- π -McCoy ring (without identity).
 - (5) The class of ideal- π -McCoy rings is not closed under subrings.
- (6) The class of ideal- π -McCoy rings is not closed under homomorphic images.

Proof. (1) Let $f(x)g(x) \in N(R[x])$ for

$$f(x) = \sum_{i=0}^{m} (a(i)_{\gamma})x^{i}, \ 0 \neq g(x) = \sum_{j=0}^{n} (b(j)_{\gamma})x^{j} \in R[x].$$

Letting $f_{\gamma}(x) = \sum_{i=0}^{m} a(i)_{\gamma} x^{i}$ and $g_{\gamma}(x) = \sum_{j=0}^{n} b(j)_{\gamma} x^{j}$, we can write $f(x) = (f_{\gamma}(x))$ and $g(x) = (g_{\gamma}(x))$. From $f(x)g(x) \in N(R[x])$, we get $f_{\gamma}(x)g_{\gamma}(x) \in N(R_{\gamma}[x])$ for all $\gamma \in \Gamma$. Suppose that each ring R_{γ} is ideal- π -McCoy. Since $g(x) \neq 0$ there exists some index $k \in \Gamma$ such that $g_{k}(x) \neq 0$. Then since R_{k} is ideal- π -McCoy, there exists some nonzero r_{k} in the ideal of R_{k} generated by the coefficients of $g_{k}(x)$ such that $f_{k}(x)r_{k} \in N(R_{k}[x])$. Say $r_{k} = \sum_{\lambda \in \Lambda} s_{\lambda} d_{\lambda} t_{\lambda}$ where $s_{\lambda}, t_{\lambda} \in R_{k}, d_{\lambda} \in \{b \mid b \text{ is a coefficient of } g_{k}(x)\}$, and Λ is finite. Let $r = (r_{\gamma}) \in R$ be the sequence with $r_{\gamma} = r_{k}$ for $\gamma = k$ and $r_{\gamma} = 0$ for $\gamma \neq k$; and $(u(\lambda)_{\gamma})$ be a coefficient of g(x) for $\lambda \in \Lambda$ such that $u(\lambda)_{\gamma} = d_{\lambda}$ for $\gamma = k$. Then $r = \sum_{\lambda \in \Lambda} (s(\lambda)_{\gamma})(u(\lambda)_{\gamma})_{\lambda}(t(\lambda)_{\gamma})$ where $s(\lambda)_{\gamma} = s_{\lambda}, t(\lambda)_{\gamma} = t_{\lambda}$ for $\gamma = k$ and $s(\lambda)_{\gamma} = 0, t(\lambda)_{\gamma} = 0$ for $\gamma \neq k$. This yields $f(x)r \in N(R[x])$, and so R is ideal- π -McCoy.

Conversely, let R be ideal- π -McCoy, and assume on the contrary that R_{γ_0} is not ideal- π -McCoy for some $\gamma_0 \in \Gamma$. Then there exist $f_{\gamma_0}(x), 0 \neq g_{\gamma_0}(x)$ in $R_{\gamma_0}[x]$ such that $f_{\gamma_0}(x)g_{\gamma_0}(x) \in N(R_{\gamma_0}[x])$ but $f_{\gamma_0}(x)r_{\gamma_0} \notin N(R_{\gamma_0}[x])$ for all $0 \neq r_{\gamma_0}$ in the ideal of R_{γ_0} generated by the coefficients of $g_{\gamma_0}(x)$. Taking $f(x) = (f_{\gamma}(x)), g(x) = (g_{\gamma}(x))$ such that f(x) and g(x) are the sequences in R[x] such that $f_{\gamma}(x) = f_{\gamma_0}(x)$ for $\gamma = \gamma_0$, $f_{\gamma}(x) = 0$ for $\gamma \neq \gamma_0$, and $g_{\gamma}(x) = g_{\gamma_0}(x)$ for $\gamma = \gamma_0$, $g_{\gamma}(x) = 0$ for $\gamma \neq \gamma_0$. Then $f(x)g(x) \in N(R[x])$ from $f_{\gamma_0}(x)g_{\gamma_0}(x) \in N(R_{\gamma_0}[x])$. But since R is ideal- π -McCoy, there exists a nonzero $s = (s_{\gamma})$ in the ideal of R generated by the coefficients of g(x) such that $f(x)s \in N(R[x])$. Note that $s_{\gamma} \neq 0$ for $\gamma = \gamma_0$ and $s_{\gamma} = 0$ for $\gamma \neq \gamma_0$ and that s_{γ_0} is in the ideal of R_{γ_0} generated by the coefficients of $g_{\gamma_0}(x)$. This yields $f_{\gamma_0}(x)s_{\gamma_0} \in N(R_{\gamma_0}[x])$, a contradiction.

The proofs of (2) and (3) are much the same as (1).

- (4) Let $f(x)g(x) \in N(I[x])$ for polynomials $f(x), 0 \neq g(x)$ in I[x]. Since $f(x)g(x) \in N(I[x]) \subseteq N(R[x])$ and R is ideal- π -McCoy, $f(x)r \in N(R[x])$ for some $0 \neq r$ in the ideal of R generated by the coefficients of g(x). Since I is an ideal of R, $r \in I$ and $f(x)r \in N(I[x])$. So I is an ideal- π -McCoy ring without identity.
- (5) Let $R=\mathrm{Mat}_n(S)$ for a reduced ring S and $n\geq 2$. Then R is not ideal- π -McCoy by Example 1.3(1). But $U_2(S)$ is ideal- π -McCoy by Lemma 1.2(4).
- (6) Let R be the ring of quaternions with integer coefficients. Then R is a domain and clearly ideal- π -McCoy. However for any odd prime integer q, the ring R/qR is isomorphic to $\mathrm{Mat}_2(\mathbb{Z}_q)$ by the argument in [11, Exercise 2A]. Thus R/qR is not ideal- π -McCoy by Example 1.3(1).

The construction in Example 1.7 also provides an ideal- π -McCoy ring which has a non-ideal- π -McCoy subring. Let S be a division ring in Example 1.7.

Then every $R_n = \operatorname{Mat}_{2^n}(S)$ is not ideal- π -McCoy by Example 1.3(1). But R is ideal- π -McCoy by the computation in Example 1.7. Note that every R_n is a subring of R.

We find a kind of subring that inherits the ideal- π -McCoy property against Proposition 2.1(5).

Corollary 2.2. Let e be a central idempotent of a ring R. Then R is ideal- π -McCoy if and only if eR and (1 - e)R are both ideal- π -McCoy.

Proof. The proof is obtained from Proposition 2.1(1) since $R = eR \oplus (1 - e)R$.

Concerning the preceding corollary, we write an actual computation to show the sufficiency. Suppose that eR and (1-e)R are both ideal- π -McCoy. Let $f(x) = \sum_{i=0}^m a_i x^i$ and $g(x) = \sum_{j=0}^n b_j x^j \in R[x]$ be such that $f(x)g(x) \in N(R[x])$ and $g(x) \neq 0$. Next set $f_1(x) = ef(x)$, $f_2(x) = (1-e)f(x)$ and $g_1(x) = eg(x)$, $g_2(x) = (1-e)g(x)$. Then $f_1(x)g_1(x) = ef(x)g(x) \in N(R[x])$ and $f_2(x)g_2(x) = (1-e)f(x)g(x) \in N(R[x])$. Since $g(x) \neq 0$, $eg(x) \neq 0$ or $(1-e)g(x) \neq 0$.

Assume $g_1(x) \neq 0$ and $g_2(x) \neq 0$. Since eR (resp. (1-e)R) is ideal- π -McCoy, there exists $r_1 \neq 0$ (resp. $r_2 \neq 0$) in the ideal of eR (resp. (1-e)R) generated by the coefficients of $g_1(x)$ (resp. $g_2(x)$) such that $f_1(x)r_1 \in N(eR[x])$ (resp. $f_2(x)r_2 \in N((1-e)R[x])$). Let $r = r_1 + r_2$. Then $r \neq 0$ since $eR \cap (1-e)R = 0$, and r is contained in the ideal of R generated by the coefficients of g(x). Moreover we have

$$f(x)r = (f_1(x) + f_2(x))(r_1 + r_2) = f_1(x)r_1 + f_2(x)r_2 \in N(R[x]).$$

The computations of the cases of $(g_1(x) \neq 0, g_2(x) = 0)$ and $(g_1(x) = 0, g_2(x) \neq 0)$ are similar. These imply that R is ideal- π -McCoy.

Theorem 2.3. The class of ideal- π -McCoy rings is closed under direct limits with injective maps.

Proof. Let $D = \{R_i, \alpha_{ij}\}$ be a direct system of ideal- π -McCoy rings R_i for $i \in I$ and ring homomorphisms $\alpha_{ij} : R_i \to R_j$ for each $i \leq j$ satisfying $\alpha_{ij}(1) = 1$, where I is a directed partially ordered set. Set $R = \varinjlim_i R_i$ be the direct limit of D with $\iota_i : R_i \to R$ and $\iota_j \alpha_{ij} = \iota_i$, where every ι_i is injective. We will show that R is an ideal- π -McCoy ring. Take $a, b \in R$. Then $a = \iota_i(a_i), b = \iota_j(b_j)$ for some $i, j \in I$ and there is $k \in I$ such that $i \leq k, j \leq k$. Define

$$a + b = \iota_k(\alpha_{ik}(a_i) + \alpha_{jk}(b_j))$$
 and $ab = \iota_k(\alpha_{ik}(a_i)\alpha_{jk}(b_j)),$

where $\alpha_{ik}(a_i)$ and $\alpha_{jk}(b_j)$ are in R_k . Then R forms a ring with $0 = \iota_i(0)$ and $1 = \iota_i(1)$.

Now let $f(x), g(x) \in R[x]$ be nonzero polynomials such that $f(x)g(x) \in N(R[x])$. There is $k \in I$ such that $f(x), g(x) \in R_k[x]$ via ι_i 's and α_{ij} 's; hence we get $f(x)g(x) \in N(R_k[x])$. Since R_k is ideal- π -McCoy, there exists $0 \neq c_k$ in the ideal of R_k generated by the coefficients of g(x) such that $f(x)c_k \in N(R_k[x])$.

Put $c = \iota_k(c_k)$. Then $f(x)c \in N(R[x])$ with a nonzero c in the ideal of R generated by the coefficients of g(x), entailing R being ideal- π -McCoy.

Write R and R_n as in Example 1.7. Then the direct limit R of R_n 's is ideal- π -McCoy, but R_n need not ideal- π -McCoy with the help of [15, Theorem 1.4].

The class of ideal- π -McCoy rings is not closed under subrings by Proposition 2.1(5). This is comparable with the following.

Proposition 2.4. Let R be a ring. If R[x] is ideal- π -McCoy over a ring R, then so is R.

Proof. Suppose that S[t] is the polynomial ring with an indeterminate t over S=R[x]. We apply the proof of [15, Proposition 2.3]. Let S be ideal- π -McCoy and suppose that $f(x)g(x) \in N(R[x])$ for nonzero polynomials f(x), g(x) in R[x]. This can be converted to that $f(t)g(t) \in N(S[t])$ for nonzero polynomials f(t), g(t) in S[t]. Since S is ideal- π -McCoy, $f(t)h(x) \in N(S[t])$ for some $0 \neq h(x)$ in the ideal of R[x] generated by the coefficients of g(t), say $(f(t)h(x))^k = 0$. Note that $f(t) \in R[t]$. Here letting $h(x) = \sum_{i=0}^n a_i x^i$ (we can set $a_0 \neq 0$, dividing by x if necessary), we get $f(t)a_0 \in N(R[t])$ from $0 = (f(t)h(x))^k = (f(t)a_0)^k + h_1x + \cdots + h_{nk}x^{nk}$ with $h_1, \ldots, h_{nk} \in R[t]$. This implies that $f(x)a_0 \in N(R[x])$ and $0 \neq a_0$ in the ideal of R generated by the coefficients of g(x), showing that R is ideal- π -McCoy.

In fact, we do not know of any example of an ideal- π -McCoy ring whose polynomial ring is not ideal- π -McCoy.

Question. Does a ring R being ideal- π -McCoy imply R[x] being ideal- π -McCoy?

Recall that a regular element means a neither left nor right zero-divisor. A ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. It is well-known that R is a right Ore ring if and only if the classical right quotient ring of R exists.

Theorem 2.5. Let R be a right Ore ring with its classical right quotient ring Q. Let R be an ideal- π -McCoy ring such that non-regular polynomials in R[x] are nilpotent. Then Q is ideal- π -McCoy.

Proof. We will use [20, Proposition 2.1.16] freely, and apply the proof of [15, Theorem 2.1]. Denote the set of all regular elements in R by C(R). Suppose $F(x)G(x) \in N(Q[x])$ for $0 \neq F(x)$, $0 \neq G(x) \in Q[x]$. Say that $(F(x)G(x))^k = 0$ and $(F(x)G(x))^{k-1} \neq 0$ for some $k \geq 1$. We can write

$$F(x) = \sum_{i=0}^{m} a_i u^{-1} x^i = (\sum_{i=0}^{m} a_i x^i) u^{-1} \text{ and } G(x) = \sum_{j=0}^{n} b_j v^{-1} x^j = (\sum_{j=0}^{n} b_j x^j) v^{-1}$$

for some a_i 's, b_j 's in R and $u, v \in C(R)$. Since R is right Ore, there exist $u_1, v_1 \in C(R)$ for all i's and j's such that $u^{-1}b_j = b'_j u_1^{-1}$ and $v^{-1}a_i = a'_i v_1^{-1}$

for some $a'_i, b'_i \in R$. Next set

$$f(x) = \sum_{i=0}^{m} a_i x^i, \ f_1(x) = \sum_{i=0}^{m} a'_i x^i,$$
$$g(x) = \sum_{j=0}^{n} b_j x^j, \ g_1(x) = \sum_{j=0}^{n} b'_j x^j \text{ and }$$
$$v_2 = uv_1, \ u_2 = vu_1.$$

Then we have

$$u^{-1}g(x) = g_1(x)u_1^{-1}, \ v^{-1}f(x) = f_1(x)v_1^{-1},$$

$$F(x)G(x) = f(x)g_1(x)u_2^{-1} \text{ and }$$

$$G(x)F(x) = g(x)f_1(x)v_2^{-1},$$

noting that $f(x) \neq 0$, $g(x) \neq 0$, $f_1(x) \neq 0$, and $g_1(x) \neq 0$. Let I and J be the ideals of Q generated by the coefficients of F(x) and G(x), respectively. Since

$$a_i = a_i u^{-1} u, \ u^{-1} b_j u_1 = b'_i, \ b_j = b_j v^{-1} v, \ v^{-1} a_i v_1 = a'_i,$$

we have $f(x), f_1(x) \in I[x]$ and $g(x), g_1(x) \in J[x]$. Note that $\sum_{i=0}^m Ra_iR \subseteq I$, $\sum_{i=0}^m Ra_i'R \subseteq I$, $\sum_{j=0}^n Rb_j'R \subseteq J$, $\sum_{j=0}^n Rb_j'R \subseteq J$, $\sum_{i=0}^m Ra_i'R \subseteq R$, and $\sum_{j=0}^n Rb_j'R \subseteq R$. We will freely use this fact in the following computation. Set $I_0 = \sum_{i=0}^m Ra_i'R$ and $J_0 = \sum_{j=0}^n Rb_j'R$.

Case 1.
$$F(x)G(x) = 0$$
 and $G(x)F(x) = 0$

Consider F(x)G(x) = 0. Then $f(x)g_1(x)u_2^{-1} = 0$ and so $f(x)g_1(x) = 0$. Since R is ideal- π -McCoy and $f(x), g_1(x) \in R[x]$, there exists $0 \neq \alpha \in J_0$ such that $f(x)\alpha \in N(R[x]) \subseteq N(Q[x])$. This yields

$$F(x)u\alpha = f(x)u^{-1}u\alpha = f(x)\alpha \in N(Q[x]),$$

where $0 \neq u\alpha \in J$.

Consider G(x)F(x) = 0. Then $g(x)f_1(x)v_2^{-1} = 0$ and so $g(x)f_1(x) = 0$. Since R is ideal- π -McCoy and $g(x), f_1(x) \in R[x]$, there exists $0 \neq \beta \in I_0$ such that $g(x)\beta \in N(R[x]) \subseteq N(Q[x])$ by the similar argument to above. This yields

$$G(x)v\beta = g(x)v^{-1}v\beta = g(x)\beta \in N(Q[x]),$$

where $0 \neq v\beta \in I$. Note $v\beta G(x) \in N(Q[x])$.

Case 2.
$$F(x)G(x) = 0$$
 and $G(x)F(x) \neq 0$

Note that G(x)F(x)G(x) = 0 and F(x)G(x)F(x) = 0. Letting H(x) = 0G(x)F(x), we have H(x)G(x)=0. Note $0 \neq H(x) \in (I \cap J)[x]$. Say $H(x)=\sum_{s=0}^{\ell} c_s w^{-1} x^s = (\sum_{s=0}^{\ell} c_s x^s) w^{-1}$ with c_s 's in R and $w \in C(R)$. Consider H(x)G(x)=0. Since R is right Ore, there exists $w_1 \in C(R)$ for all ℓ 's such that $w^{-1}b_j=d_jw_1^{-1}$ for some $d_j \in R$. Letting h(x)=0

 $\sum_{s=0}^\ell c_s x^s$ and $g_2(x)=\sum_{j=0}^n d_j x^j,$ we have $H(x)G(x)=h(x)g_2(x)(vw_1)^{-1}$ and so $h(x)g_2(x)=0.$ Note

$$w^{-1}G(x) = w^{-1}g(x)v^{-1} = g_2(x)w_1^{-1}v^{-1} = g_2(x)(vw_1)^{-1}.$$

Since R is ideal- π -McCoy and $h(x), g_2(x) \in R[x]$, there exists $0 \neq \gamma \in \sum_{s=0}^{\ell} Rc_s R$ such that $\gamma g_2(x) \in N(R[x]) \subseteq N(Q[x])$. Note that $\gamma \in I \cap J$, $g_2(x)\gamma \in N(Q[x])$ and

$$w^{-1}G(x)vw_1\gamma = g_2(x)(vw_1)^{-1}vw_1\gamma = g_2(x)\gamma \in N(Q[x]).$$

This yields $G(x)vw_1\gamma w^{-1} \in N(Q[x])$ with $0 \neq vw_1\gamma w^{-1} \in I \cap J$.

Next since F(x)G(x) = 0, the same computation as in Case 1 is applicable to find nonzero $q \in J$ such that $F(x)q \in N(Q[x])$.

Case 3.
$$F(x)G(x) \neq 0$$
 and $G(x)F(x) = 0$

Note that F(x)G(x)F(x)=0 and G(x)F(x)G(x)=0. Letting K(x)=F(x)G(x), we have K(x)F(x)=0 with $0\neq K(x)\in (I\cap J)[x]$. Note $0\neq K(x)\in (I\cap J)[x]$. Say $K(x)=\sum_{s=0}^t e_s z^{-1}x^s=(\sum_{s=0}^t e_s x^s)z^{-1}$ with e_s 's in R and $z\in C(R)$.

Since R is right Ore, there exists $z_1 \in C(R)$ for all i's such that $z^{-1}a_i = y_iz_1^{-1}$ for some $y_i \in R$. Let $k(x) = \sum_{s=0}^t e_s x^s$ and $f_2(x) = \sum_{i=0}^m y_i x^i$. Then $k(x) \neq 0$ and we have $K(x)F(x) = k(x)f_2(x)(uz_1)^{-1}$, entailing $k(x)f_2(x) = 0$. Note

$$z^{-1}F(x) = z^{-1}f(x)u^{-1} = f_2(x)z_1^{-1}u^{-1} = f_2(x)(uz_1)^{-1}.$$

Since R is ideal- π -McCoy and $k(x), f_2(x) \in R[x]$, there exists $0 \neq \delta \in \sum_{s=0}^t Re_s R$ such that $\delta f_2(x) \in N(R[x]) \subseteq N(Q[x])$. Note that $\delta \in I \cap J$, $f_2(x)\delta \in N(Q[x])$ and

$$z^{-1}F(x)uz_1\delta = f_2(x)(uz_1)^{-1}uz_1\delta = f_2(x)\delta \in N(Q[x]).$$

This yields $F(x)uz_1\delta z^{-1} \in N(Q[x])$ with $0 \neq uz_1\delta z^{-1} \in I \cap J$.

Next since G(x)F(x)=0, the same computation as in Case 1 is applicable to find nonzero $p\in I$ such that $pG(x)\in N(Q[x])$.

Case 4.
$$F(x)G(x) \neq 0$$
 and $G(x)F(x) \neq 0$

Suppose $F(x)G(x) \neq 0$ and $G(x)F(x) \neq 0$. Then there exists $k \geq 2$ such that $(F(x)G(x))^k = 0$ and $(F(x)G(x))^{k-1} \neq 0$. Since R is right Ore, $u_2^{-1}(F(x)G(x))^{k-1} = A(x)u_3^{-1}$ for some $A(x) \in R[x]$

Since R is right Ore, $u_2^{-1}(F(x)G(x))^{k-1} = A(x)u_3^{-1}$ for some $A(x) \in R[x]$ and some $u_3 \in C(R)$. Here A(x) is also nonzero because both $(F(x)G(x))^{k-1}$ is nonzero. Note that $A(x) \in (I \cap J)[x]$ and

$$f(x)g_1(x)A(x) = f(x)g_1(x)u_2^{-1}(F(x)G(x))^{k-1}u_3 = (F(x)G(x))^k u_3 = 0.$$

Since R is ideal- π -McCoy, there exists nonzero β in the ideal of R generated by the coefficients of A(x) such that $f(x)g_1(x)\beta \in N(R[x])$. Note $\beta \in I \cap J$. Moreover $g_1(x)\beta$ is nilpotent by hypothesis. Then, from

$$g_1(x)\beta = g_1(x)u_2^{-1}u_2\beta = u^{-1}g(x)v^{-1}u_2\beta = u^{-1}G(x)u_2\beta,$$

we have $G(x)u_2\beta u^{-1} \in N(Q[x])$ with $0 \neq u_2\beta u^{-1} \in I \cap J$.

1900

By Cases 1, 2, 3 and 4, we have that

$$\beta'G(x) \in N(Q[x])$$
 for some $0 \neq \beta' \in I$.

Therefore Q is ideal- π -McCoy by help of Proposition 1.1(1).

The following has a similar structure to the case of classical quotient rings.

Proposition 2.6. Let R be a ring and Δ be a multiplicatively closed subset of R consisting of central regular elements. Then

- (1) R is ideal- π -McCoy if and only if $\Delta^{-1}R$ is.
- (2) R is strongly right McCoy if and only if $\Delta^{-1}R$ is.

Proof. The necessity follows from the proof of Theorem 2.5. Let $S = \Delta^{-1}R$ and put $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j$ be nonzero polynomials in R[x].

- (1) Suppose that S is ideal- π -McCoy and $f(x)g(x) \in N(R[x])$. Since S is ideal- π -McCoy, $f(x)(cw^{-1}) \in N(S[x])$ for some nonzero cw^{-1} in the ideal of S generated by the coefficients of g(x). Note that $c \neq 0$ and c is also contained in the ideal of S generated by the coefficients of g(x). But since w is central, we get $f(x)c \in N(R[x])$, concluding that R is ideal- π -McCoy.
 - (2) is similar to the proof of (1).

Corollary 2.7. Let R be a ring. Then R[x] is ideal- π -McCoy (resp. strongly right McCoy) if and only if $R[x; x^{-1}]$ is.

П

Proof. Note that $\Delta = \{1, x, x^2, \ldots\}$ is a multiplicatively closed subset of R[x] consisting of central regular elements. So Proposition 2.6 gives the proof since $R[x; x^{-1}] = \Delta^{-1} R[x]$.

Let R be an algebra (with or without identity) over a commutative ring S. The *Dorroh extension* of R by S is the Abelian group $R \oplus S$ with multiplication given by $(r_1, s_1)(r_2, s_2) = (r_1r_2 + s_1r_2 + s_2r_1, s_1s_2)$ for $r_i \in R$ and $s_i \in S$.

Theorem 2.8. Let R be an algebra over a commutative domain S, and D be the Dorroh extension of R by S. Then

- (1) R is ideal- π -McCoy if and only if D is.
- (2) R is strongly right McCoy if and only if D is.
- (3) R is π -McCoy if and only if D is.

Proof. Note that $s \in S$ is identified with $s1 \in R$ and so $R = \{r+s \mid (r,s) \in D\}$ and S is considered as a subring of R. Let $F(x) = (f_1(x), f_2(x))$ and $G(x) = (g_1(x), g_2(x))$ be any nonzero polynomials in D[x] where $f_1(x) = \sum_{i=1}^m a_i x^i$, $g_1(x) = \sum_{j=1}^n b_j x^j \in R[x]$ and $f_2(x) = \sum_{i=1}^m s_i x^i$, $g_2(x) = \sum_{j=1}^n t_j x^j \in S[x]$.

(1) Suppose that R is ideal- π -McCoy. Let $(F(x)G(x))^k = 0$ and

$$(F(x)G(x))^{k-1} \neq 0$$

for some $k \ge 1$. Then $(f_2(x)g_2(x))^k = 0$ and so we have $f_2(x) = 0$ or $g_2(x) = 0$ since S[x] is a domain.

(i) If $f_2(x) = 0$, then we have $f_1(x)(g_1(x) + g_2(x)) \in N(R[x])$ from $0 = (F(x)G(x))^k = (f_1(x)(g_1(x) + g_2(x)), 0)^k$. Since R is ideal- π -McCoy, there exists a nonzero $r = \sum_{u,v} r_{u_v}(b_u + t_u) r'_{u_v} \in \sum_{j=1}^n R(b_j + t_j) R$ such that $f_1(x)r \in N(R[x])$. Then

$$F(x)(r,0) \in N(D[x]),$$

where $0 \neq (r,0) = \sum_{u,v} (r_{u_v},0)(b_u,t_u)(r'_{u_v},0) \in \sum_{j=1}^n D(b_j,t_j)D$, entailing that D is ideal- π -McCoy.

(ii) Let $g_2(x)=0$. By the similar argument to (i), we have $(f_1(x)+f_2(x))g_1(x)\in N(R[x])$. Since R is ideal- π -McCoy, there exists a nonzero $r=\sum_{u,v}r_{u_v}b_ur'_{u_v}\in\sum_{j=0}^nRb_jR$ such that $(f_1(x)+f_2(x))r\in N(R[x])$. Then $F(x)(r,0)\in N(D[x])$, where $0\neq (r,0)=\sum_{u,v}(r_{u_v},0)(b_u,0)(r'_{u_v},0)\in\sum_{j=0}^nD(b_j,0)D$, showing that D is ideal- π -McCoy.

By (i) and (ii), D is ideal- π -McCoy.

Conversely, suppose that D is ideal- π -McCoy. Let $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j$ in R[x] be nonzero polynomials with $f(x)g(x) \in N(R[x])$, say $(f(x)g(x))^k = 0$ but $(f(x)g(x))^{k-1} \neq 0$ for some $k \geq 1$. We take F(x) = (f(x), 0) and G(x) = (g(x), 0) in D[x]. Then $(F(x)G(x))^k = 0$ and so $F(x)G(x) \in N(D[x])$. Since D is ideal- π -McCoy, there exists a nonzero $(r, s) = \sum_{u,v} (r_{uv}, s_{uv})(b_u, 0)(r'_{uv}, s'_{uv}) \in \sum_{j=0}^{n} D(b_j, 0)D$ with $F(x)(r, s) \in N(D[x])$. Since $(r, s) = (\sum_{u,v} (r_{uv} + s_{uv})b_u(r'_{uv} + s'_{uv}), 0)$, we have $0 \neq r = \sum_{u,v} (r_{uv} + s_{uv})b_u(r'_{uv} + s'_{uv}) \in \sum_{j=0}^{n} Rb_j R$ and f(x)r = 0. Therefore R is ideal- π -McCoy.

(2) and (3) are similar to the proof of (1). \Box

Finally, we characterize the class of noncommutative ideal- π -McCoy rings of minimal order. |-| means the cardinality.

Proposition 2.9. Let R be an ideal- π -McCoy ring. If R is a noncommutative ideal- π -McCoy ring of minimal order, then R is of order 8 and is isomorphic to $U_2(\mathbb{Z}_2)$.

Proof. Let R be a noncommutative ideal- π -McCoy of minimal order. Then $|R| \geq 2^3$ by [9, Theorem]. If $|R| = 2^3$, then R is isomorphic to $U_2(\mathbb{Z}_2)$ by [9, Proposition]. But $U_2(\mathbb{Z}_2)$ is an ideal- π -McCoy ring by Lemma 1.2(4). This yields that R is of order 8 and is isomorphic to $U_2(\mathbb{Z}_2)$.

Acknowledgments. The authors thank the referee for very careful reading of the manuscript and many valuable suggestions that improved the paper by much. This work was supported by a 2-Year Research Grant of Pusan National University.

References

- D. D. Anderson and V. Camillo, Armendariz rings and gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265–2272.
- [2] _____, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847–2852.

- [3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128–3140.
- [4] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470–473.
- [5] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc. 2 (1970), 363–368.
- [6] G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102–129, World Sci. Publ., River Edge, NJ, 1993.
- [7] V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599–615.
- [8] P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648.
- [9] K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1968), 512–514.
- [10] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979.
- [11] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
- [12] C. Y. Hong, Y. C. Jeon, N. K. Kim, and Y. Lee, The McCoy condition on noncommutative rings, Comm. Algebra 39 (2011), no. 5, 1809–1825.
- [13] S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186–199.
- [14] Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135–146.
- [15] Y. C. Jeon, H. K. Kim, N. K. Kim, T. K. Kwak, Y. Lee, and D. E. Yeo, On a generalization of the McCoy condition, J. Korean Math. Soc. 47 (2010), no. 6, 1269–1282.
- [16] N. K. Kim and Y. Lee, On a ring property unifying reversible and right duo rings, J. Korean Math. Soc. (to appear).
- [17] ______, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207–223.
- [18] T. K. Kwak and Y. Lee, Rings over which coefficients of nilpotent polynomials are nilpotent, Internat. J. Algebra Comput. 21 (2011), no. 5, 745–762.
- [19] Z. Lei, J. Chen, and Z. Ying, A question on McCoy rings, Bull. Aust. Math. Soc. 76 (2007), no. 1, 137–141.
- [20] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987.
- [21] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286–295.
- [22] P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.
- [23] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14–17.
- [24] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43–60.

JEOUNG SOO CHEON
DEPARTMENT OF MATHEMATICS

Pusan National University

Pusan 609-735, Korea

 $E ext{-}mail\ address: jeoungsoo@pusan.ac.kr}$

Chan Huh

DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY PUSAN 609-735, KOREA

E-mail address: chuh@pusan.ac.kr

TAI KEUN KWAK DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY POCHEON 487-711, KOREA

 $E\text{-}mail\ address{:}\ \texttt{tkkwak@daejin.ac.kr}$

Yang Lee

DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY PUSAN 609-735, KOREA

 $E ext{-}mail\ address: {\tt ylee@pusan.ac.kr}$