• Title/Summary/Keyword: strong convergence theorem

Search Result 61, Processing Time 0.029 seconds

STRONG CONVERGENCE THEOREM OF COMMON ELEMENTS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

  • Zhang, Lijuan;Hou, Zhibin
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.599-605
    • /
    • 2010
  • In this paper, we introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem, the set of common fixed points of an asymptotically strictly pseudocontractive mapping in a Hilbert space. We show that the iterative sequence converges strongly to a common element of the two sets.

A NEW ALGORITHM FOR SOLVING MIXED EQUILIBRIUM PROBLEM AND FINDING COMMON FIXED POINTS OF BREGMAN STRONGLY NONEXPANSIVE MAPPINGS

  • Biranvand, Nader;Darvish, Vahid
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.777-798
    • /
    • 2018
  • In this paper, we study a new iterative method for solving mixed equilibrium problem and a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. Moreover, we prove a strong convergence theorem for finding common fixed points which also are solutions of a mixed equilibrium problem.

Accelerated Tseng's Technique to Solve Cayley Inclusion Problem in Hilbert Spaces

  • Shamshad, Husain;Uqba, Rafat
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.673-687
    • /
    • 2022
  • In this study, we solve the Cayley inclusion problem and the fixed point problem in real Hilbert space using Tseng's technique with inertial extrapolation in order to obtain more efficient results. We provide a strong convergence theorem to approximate a common solution to the Cayley inclusion problem and the fixed point problem under some appropriate assumptions. Finally, we present a numerical example that satisfies the problem and shows the computational performance of our suggested technique.

ON THE PRUSS EXTENSION OF THE HSU-ROBBINS-ERD S THEOREM

  • Sung, Soo-Hak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.305-314
    • /
    • 1999
  • The Hsu-Robbins-erd s theorem states that if {$X_m,n\geq1$} is a sequence of independent and identically distributed random variables, then ${EX_1}^2<\infty$ and $EX_1$=0 if and only if ${\sum_{n=1}}^\infty\;P($\mid${\sum_{k=1}}^nX_k$\mid$\geqn\in)<\infty$ for every $\in$ > 0. Under some auxiliary conditions, Sp taru (1994) extended this to the case where the $X_n$ are independent, but their distributions come from a finite set. Pruss (1996) proved Sp taru's result under weaker conditions, The purpose of this paper is to improve Pruss conditions.

  • PDF

Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points of Demicontractive Single-valued and Quasi-nonexpansive Multi-valued Mappings

  • Onjai-uea, Nawitcha;Phuengrattana, Withun
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.703-723
    • /
    • 2019
  • In this paper, we consider a common solution of three problems in real Hilbert spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed point problem for demicontractive single-valued and quasi-nonexpansive multi-valued mappings. To find the solution we present a new iterative algorithm and prove a strong convergence theorem under mild conditions. Moreover, we provide a numerical example to illustrate the convergence behavior of the proposed iterative method.

MARCINKIEWICZ-TYPE LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS

  • Hong, Dug-Hun;Volodin, Andrei I.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1133-1143
    • /
    • 1999
  • Chaterji strengthened version of a theorem for martin-gales which is a generalization of a theorem of Marcinkiewicz proving that if $X_n$ is a sequence of independent, identically distributed random variables with $E{\mid}X_n{\mid}^p\;<\;{\infty}$, 0 < P < 2 and $EX_1\;=\;1{\leq}\;p\;<\;2$ then $n^{-1/p}{\sum^n}_{i=1}X_i\;\rightarrow\;0$ a,s, and in $L^p$. In this paper, we probe a version of law of large numbers for double arrays. If ${X_{ij}}$ is a double sequence of random variables with $E{\mid}X_{11}\mid^log^+\mid X_{11}\mid^p\;<\infty$, 0 < P <2, then $lim_{m{\vee}n{\rightarrow}\infty}\frac{{\sum^m}_{i=1}{\sum^n}_{j=1}(X_{ij-a_{ij}}}{(mn)^\frac{1}{p}}\;=0$ a.s. and in $L^p$, where $a_{ij}$ = 0 if 0 < p < 1, and $a_{ij}\;=\;E[X_{ij}\midF_[ij}]$ if $1{\leq}p{\leq}2$, which is a generalization of Etemadi's marcinkiewicz-type SLLN for double arrays. this also generalize earlier results of Smythe, and Gut for double arrays of i.i.d. r.v's.

  • PDF

A state space meshless method for the 3D analysis of FGM axisymmetric circular plates

  • Wu, Chih-Ping;Liu, Yan-Cheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.161-182
    • /
    • 2016
  • A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) analysis of functionally graded material (FGM) axisymmetric circular plates with simply-supported and clamped edges. The strong formulation of this 3D elasticity axisymmetric problem is derived on the basis of the Reissner mixed variational theorem (RMVT), which consists of the Euler-Lagrange equations of this problem and its associated boundary conditions. The primary field variables are naturally independent of the circumferential coordinate, then interpolated in the radial coordinate using the early proposed DRK interpolation functions, and finally the state space equations of this problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate. The state space DRK solutions can then be obtained by means of the transfer matrix method. The accuracy and convergence of this method are examined by comparing their solutions with the accurate ones available in the literature.

A NEW MAPPING FOR FINDING A COMMON SOLUTION OF SPLIT GENERALIZED EQUILIBRIUM PROBLEM, VARIATIONAL INEQUALITY PROBLEM AND FIXED POINT PROBLEM

  • Farid, Mohammad;Kazmi, Kaleem Raza
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.297-327
    • /
    • 2019
  • In this paper, we introduce and study a general iterative algorithm to approximate a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem for a finite family of nonexpansive mappings in real Hilbert spaces. Further, we prove a strong convergence theorem for the sequences generated by the proposed iterative scheme. Finally, we derive some consequences from our main result. The results presented in this paper extended and unify many of the previously known results in this area.

CONSTRUCTION OF A SOLUTION OF SPLIT EQUALITY VARIATIONAL INEQUALITY PROBLEM FOR PSEUDOMONOTONE MAPPINGS IN BANACH SPACES

  • Wega, Getahun Bekele
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.595-619
    • /
    • 2022
  • The purpose of this paper is to introduce an iterative algorithm for approximating a solution of split equality variational inequality problem for pseudomonotone mappings in the setting of Banach spaces. Under certain conditions, we prove a strong convergence theorem for the iterative scheme produced by the method in real reflexive Banach spaces. The assumption that the mappings are uniformly continuous and sequentially weakly continuous on bounded subsets of Banach spaces are dispensed with. In addition, we present an application of our main results to find solutions of split equality minimum point problems for convex functions in real reflexive Banach spaces. Finally, we provide a numerical example which supports our main result. Our results improve and generalize many of the results in the literature.

HALPERN'S ITERATION FOR APPROXIMATING FIXED POINTS OF A NEW CLASS OF ENRICHED NONSPREDING-TYPE MAPPINGS IN HILBERT SPACES WITH APPLICATIONS TO MINIMAX INEQUALITY PROBLEM

  • Imo Kalu Agwu;Godwin Amechi Okeke;Hallowed Oluwadara Olaoluwa;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.673-710
    • /
    • 2024
  • In this paper, we propose a modified Halpern's iterative scheme developed from a sequence of a new class of enriched nonspreading mappings and an enriched nonexpansive mapping in the setup of a real Hilbert space. Moreover, we prove strong convergence theorem of the proposed method under mild conditions on the control parameters. Also, we obtain some basic properties of our new class of enriched nonspreading mappings.