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A NEW MAPPING FOR FINDING A COMMON
SOLUTION OF SPLIT GENERALIZED EQUILIBRIUM
PROBLEM, VARIATIONAL INEQUALITY PROBLEM

AND FIXED POINT PROBLEM

MOHAMMAD FARID* AND KALEEM RAzZA KAZMI

ABSTRACT. In this paper, we introduce and study a general itera-
tive algorithm to approximate a common solution of split general-
ized equilibrium problem, variational inequality problem and fixed
point problem for a finite family of nonexpansive mappings in real
Hilbert spaces. Further, we prove a strong convergence theorem for
the sequences generated by the proposed iterative scheme. Finally,
we derive some consequences from our main result. The results
presented in this paper extended and unify many of the previously
known results in this area.

1. Introduction

Throughout the paper unless otherwise stated, let H; and H be real
Hilbert spaces with inner product (-,-) and norm || - ||. Let C' and @ be
nonempty closed convex subsets of H; and Hs, respectively.

A mapping T : C' — C'is called nonezxpansive, if

[Tz = Ty|| < |l —yll, =,y €C.
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The fized point problem (in short, FPP) for a mapping T7': C' — C'is
to find z € C such that

(1.1) Tz = x.
The solution set of FPP(1.1) is denoted by Fix(T).

The classical scalar nonlinear variational inequality problem (in short,
VIP) is to find = € C such that

(1.2) (Bx,y —x) >0, Yy € C,

where B : C'— H; is a nonlinear mapping. The solution set of VIP(1.2)
is denoted by Q. It is introduced by Hartman and Stampacchia [9].

In 1994, Blum and Oettli [2] introduced and studied the following
equilibrium problem (in short, EP): Find x € C such that

(1.3) Fi(x,y) >0, Yy € C,

where F} : C x C — R is a bifunction. We denote the solution set of
EP(1.3) by Sol(EP(1.3)).

In the last two decades, EP(1.3) has been generalized and extensively
studied in many directions due to its importance; see for example [4,6,
7,11,12,16,21] for the literature on the existence and iterative approxi-
mation of solution of the various generalizations of EP(1.3).

Recently, Kazmi and Rizvi [13] considered the following pair of equi-
librium problems in different spaces, which is called split equilibrium
problem (in short, SEP): Let F} : C x C - R and F, : Q@ X Q — R be
nonlinear bifunctions and let A : H; — Hy be a bounded linear operator
then the split equilibrium problem (SEP) is to find z* € C' such that

(1.4) Fi(z*,2) >0, Yz € C,
and such that
(1.5) y* = Ax" € @ solves Fy(y*,y) > 0, Yy € Q.

They introduced and studied some iterative methods for finding the
common solution of SEP(1.4)-(1.5), VIP(1.2) and FPP(1.1). For related
work, see [14].

In this paper, we consider the following split generalized equilibrium
problem (in short, SGEP):
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Let ¢ : C x C' = R, and ¢ : @ x @ — R be nonlinear mappings,
then SGEP is to find 2* € C such that

(1.6) Fi(z*,z) + ¢(z,2") — ¢p(a*,2") > 0, Vz € C,
and such that

(1.7) y* = Az"™ € Q solves Fy(y*,y) + ¢(y,y") — o(y",y") >0, Vy € Q.

When looked separately, (1.6) is the generalized equilibrium problem
(GEP) and we denote its solution set by Sol(GEP(1.6)). The SGEP(1.6)-
(1.7) constitutes a pair of generalized equilibrium problems which have
to be solved so that the image y* = Ax* under a given bounded linear
operator A, of the solution z* of the GEP(1.6) in H; is the solution
of another GEP(1.6) in another space Hs. We denote the solution set
of GEP(1.7) by Sol(GEP(1.7)). The solution set of SGEP(1.6)-(1.7) is
denoted by I' = {p € Sol(GEP(1.6)) : Ap € Sol(GEP(1.7))}.

SGEP(1.6)-(1.7) generalize multiple-sets split feasibility problem. It also
includes as special case, the split variational inequality problem [6] which
is the generalization of split zero problems and split feasibility problems,
see for detail [3,5,6,16,17].

Recently, Kangtunyakarn and Suantai [10] defined the new mappings

Uno = ]

Una = N1 TWUno+ (1 — A1)l

Un2 = M2DoUn1 + (1 = N2)Una

Unn-1 = AN TNvoUnnv—o+ (1= Nonv—1)Unn—2

K,=U,n = MNINUpn-1+ (1= N)Unn-1,

where T; : C' — C, i = 1,2,...,N is a finite family of nonexpansive
mappings and {\,;}, C (0,1]. Such a mapping K, is called the K-
mapping generated by 11,15, ..., Ty and {A,1},{ A2}, {Aun}

Moreover, Kangtunyakarn and Suantai [10] introduced the following it-
erative methods to obtained a strong convergence theorem for EP(1.3)
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and FPP(1.1): x; € H

1
{ F(yn,y) + T—<y—yn,yn—xn> >0, VyeC,
Tni1 = Y f(Tn) + Brn + (1 — Bo) — anA) K,y

Motivated by the work of Censor et al. [6], Moudafi [16,17], Kazmi et
al. [13,14], Kangtunyakarn and Suantai [10] and by the ongoing research
in this direction, we suggest and analyze a general iterative method for
approximating the common solution to the split generalized equilibrium
problem, variational inequality problem and fixed point problem for a
finite family of nonexpansive mappings in Hilbert space. Furthermore,
we prove that the sequence generated by the proposed iterative scheme
converges strongly to the common solution of split generalized equilib-
rium problem, variational inequality problem and fixed point problem.
The results and methods presented in this paper generalize, improve and
unify many previously known results in this research area.

2. Preliminaries

We recall some concepts and results that are needed in the sequel.

DEFINITION 2.1. A mapping T : H; — H, is said to be
(i) monotone, if

il) a-inverse strongl monotone, if there exists a constant o > 0 such
gvy
that

(Tx — Ty,x —y) > a||Tx —Ty||?, Va,y € Hy;
(iii) B-Lipschitz continuous, if there exists a constant 5 > 0 such that
1Tz =Tyl < Blle —yl, Yo,y € Hy.

We note that if T' is a-inverse strongly monotone mapping, then 7'
is monotone and é—Lipschitz continuous but converse need not be true.
For o = 1, a-inverse strongly monotone mapping 7T is called firmly
nonexpansive mapping.



Split generalized equilibrium problem 301

DEFINITION 2.2. [1]. A mapping T": H; — H; is said to be averaged
if and only if it can be written as the average of the identity mapping
and a nonexpansive mapping, i.e.,

T=(1-a)l+as,

where « € (0,1) and S : H; — H; is nonexpansive and [ is the identity
operator on H;.

The following are some key properties of averaged mappings.

LEMMA 2.3. [16].
(i) IfT = (1—a)S+aV, where S : Hy — H; is averaged, V : Hy — H;
is nonexpansive and o € (0,1), then T' is averaged;
(ii) The composite of finitely many averaged mappings is averaged;

(iii) If the mappings {T;}¥ , are averaged and have a common fixed
point, then

N
ﬂ Fix(T}) = Fix(T\Ts.. Ty );
=1

(iv) If T is T-ism, then for v > 0, ~T is Z-ism;
(v) T is averaged if and only if, its complement [ — T is T-ism for some
T> 1.
2

DEFINITION 2.4. [1]. A multi-valued mapping M : H; — 2 is called
monotone if for all x,y € Hy, u € Mz and v € My such that

(x —y,u—v) >0,

DEFINITION 2.5. [1]. A multi-valued monotone mapping M : H; —
21 is mazimal if the Graph(M), the graph of M, is not properly con-
tained in the graph of any other monotone mapping.

REMARK 2.6. . It is known that a multi-valued monotone mapping
M is maximal if and only if for (z,u) € Hy x Hy, (x —y,u—v) > 0, for
every (y,v) € Graph(M) implies that u € Mx.
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For every point x € Hj, there exists a unique nearest point to z in C'
denoted by Pgox such that
(2.1) |z — Pox|| < [lz —yll, vy € C.

The mapping P is called the metric projection of H; onto C'. It is well
known that Po is nonexpansive and satisfies

(2.2) (x — vy, Pox — Poy) > ||Pex — Poyl|?, Yo,y € Hy.
Moreover, Pox is characterized by the fact that Pox € C' and
(2.3) (x — Pox,y — Pox) <0, Vy € C.

This implies that

(24) |z —yl]* > ||l — Pex|* + |ly — Pex|?, Vz € Hy, Yy € C.

In a real Hilbert space Hi, it is well known that
(25) A+ (1= Nyll? = All2]® + (1 = Nly[I* = AL = Nz - y|?
for all x,y € Hy and X € [0, 1].

It is also known that every Hilbert space H; satisfies:

1. Opial’s condition [18], i.e., for any sequence {z"} with ™ — z the

inequality
(2.6) liminf ||2" — z|| < liminf ||2" — y|
n—oo n—oo
holds for every y € H; with y # x;
2.
(2.7) 2+ ylI* < ll«]* + 2{y, = + y), Va,y € Hi.

LEMMA 2.7. [20]. Let {z,} and {y,} be bounded sequences in a Ba-
nach space E and let [3,, be a sequence in (0, 1) with 0 < liminf,, . £, <
limsup,, ., B, < 1. Suppose x,11 = (1 — B,)yn + Bnx, for all integers

n >0 and limsup,,_, . (|Yn+1 — Ynll = [|Tns1 — znl]) < 0. Then
lim ||y, — .|| = 0.
n—oo

LEMMA 2.8. [15]. Assume that B is a strongly positive self-adjoint
bounded linear operator on a Hilbert space Hy with coefficient 7 > 0
and 0 < p < ||B||7'. Then ||I — pB| <1 - p7.
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LEMMA 2.9. [22]. Assume that {a,} is a sequence of nonnegative real
numbers such that

An1 S (]- - rYn)a'n + 671’ n Z 07

where {7,} is a sequence in (0,1) and {d,} is a sequence in R such that
(1) 20y Y = 005
(ii) limsup,,_, . i—z <0or Y 2 [0, <4oo.

Then lim,,_, a, = 0.

LEMMA 2.10. [10]. Let C' be a nonempty closed convex set of a strictly
convex Banach space. Let {T;}Y, be a finite family of nonexpansive
mappings of C' into itself with ﬂi\il Fix(T;) # 0 and let A\, Ag, ..., An
be real numbers such that 0 < \; < 1 for every 1 = 1,2,.... N — 1 and
0 < Ay < 1. Let K be the K-mapping generated by Ty,T5, ..., Ty and
A, Az, s An. Then Fix(K) = (O, Fix(T}).

LEMMA 2.11. [10]. Let C' be a nonempty convex subset of a Ba-
nach space. Let {T;}, be a finite family of nonexpansive mappings
of C into itself and {\,;}}~, be sequences in [0,1] such that \,; —
Ai(i = 1,2, ..., N). Moreover, for every n € N, let K and K,, be the K-
mappings generated by T1,T,, ..., Ty and A\, Ao, ..., Ay and Ty, T5, ..., Tx
and {M\, 1}, {2}, ..., { N}, respectively. Then for every x € C,

lim ||K,z — Kz|| = 0.
n—oo

ASSUMPTION 2.12. Let F} : C x C — R and ¢ : C x C — R be
bimappings satisfy the following conditions:

(1) Fi(z,z) =0, Vo € C;
(2) Fy is monotone, i.e.,
Fi(z,y) + Fily,z) <0, Va,y € C;
(3) For eachy € C, x — Fy(x,y) is weakly upper semicontinuous;
(4) For each x € C, y — Fy(z,y) is convex and lower semicontinuous;
(5)
(6)

¢1(.,.) is weakly continuous and ¢;(.,y) is convex;
¢y is skew-symmetric, i.e.,

¢1($,ZE) - ¢1(.Z’,y) + ¢1(yay) - ¢l<y7$> Z 07 Va:,y eC.
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Now, we define T |, — C as follows:
TT(FL(M)(Z) = {CL’ cC: Fl(xuy) + ¢1(y711/’) - ¢1(ZL’,IL‘)
1
(2.8) —l—;(y—x,x—z) >0, Yy e C},

where r is a positive real number.

LEMMA 2.13. [8]. Let H; be a real Hilbert space and let C' be a
nonempty, closed and convex subset of Hy. Let F,¢; : C x C" — R
be nonlinear mappings satisfying the Assumption 2.12. Assume that for
each z € Hy and for each x € C, there exist a bounded subset D, C C
and z, € C such that for any y € C'\ D,,

Fy(y, 22) + ¢1(22,9) — ¢1(y, y) + %(Zﬂc —y,y—2) <0,

Let the mapping T be defined by (2.8). Then the following con-
clusions hold:

(i) T,ﬂ(Fl’m)(z) is nonempty for each z € Hy;
(ii) T s single-valued;
(iii) T s g firmly nonexpansive mapping, i.e., for all zy, zo € Hq,

T (20) = T () | < (T (20) = T (), 20 — 22);

(iv) Fix(TF")= Sol(GEP(1.6));
(v) Sol(GEP(1.6)) is closed and convex.

Further, assume that Fy : QQ X Q — R and ¢5 : @) X Q — R satisfying
Assumption 2.12. For s > 0 and for all u € H,, define a mapping

T2 Q as follows:
TS(F2,¢2)(U) = {ve@: FKv,w)+ p(w,v) — ¢a(v,v)
1
(2.9) Tow v —u) 20, Vw € Q)

Then, we easily observe that T292) g nonempty, single-valued, firmly
nonexpansive, FiX(TS(FQ’@)): Sol(GEP(1.7)) and Sol(GEP(1.7)) is closed

and convex.
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LEMMA 2.14. [8]. Let Fy and ¢, satisfy Assumption 2.12 and let the

mapping TE9) be defined by (2.9). Let x1,xo € Hy and ri,r9 > 0,
then

To —T
T ) = T )] < o — |+ 2790 2 — ).
2

3. Main Results

In this section, we prove a strong convergence theorem based on the
proposed iterative scheme for computing the approximate common so-
lution of SGEP(1.6)-(1.7), VIP(1.2) and FPP(1.1) for a finite family of
nonexpansive mappings in real Hilbert spaces.

THEOREM 3.1. Let Hy and Hy be two real Hilbert spaces, let C' C H;
and () C Hy be nonempty closed convex subsets. Let A : Hy — H, be a
bounded linear operator. Assume that F; : CxC — R, Fy : Q x Q) — R,
¢1:CxC —Rand ¢y : QQ X QQ — R are nonlinear mappings satisfying
Assumption 2.12 and F, is upper semicontinuous in first argument. Let
T; : C — C be a nonexpansive mapping for each i = 1,2, ..., N such that

N
©=NFx(T;)) YT #0D. Let f : HA — H; be a contraction mapping
i=1

with constant « € (0,1) and D be a strongly positive bounded linear self
adjoint operator on Hy, with constant 7y > 0 such that 0 < v < g < 7+§.
Let B : C — H; be a T-inverse strongly monotone mapping. For a given
xo € C arbitrarily, let the sequences {u,}, {x,} and {y,} be generated
by the following iterative schemes:

wy = T (a, + GAT(T) — 1) Ax,);
Tpyl = Oén7f<Knxn) + ﬁnxn + ((1 - Bn)l - OénD)Knyna

where {p,} C (0,27) and {an,}, {Bn}, {rn} are sequences in (0,1);
5 € (0, %), L is the spectral radius of the operator A*A and A* is the
adjoint of A, and A\, Ag, ..., \y be real numbers such that 0 < \; < 1
for every i = 1,2,..,N —1l and 0 < Ay < 1, A\,; = N(i = 1,2,...,N)
satisfying the following conditions:

(1) limy, oo 0 = 0, D07 vy = 00;

(ii) 0 < liminf, o B, < limsup,,_, B < 1;

(iii) liminf, oo 7, > 0 and lim, o |71 — 70| = 0;
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(iv) 0 < liminf, o pt, < limsup,_, . pn < 27 and lim, o0 |fny1 —
fn| = 0;
(V) ZZO:O |)\n,z — )\n,Li’ < 00, Vi = 1, 2, R N.
Then the sequence {x,} converges strongly to some z, € ©, where z, =
Po(vf + (I — D))z, which solves the following variational inequality:

(3.1) (D —=7f)zs,2 — 2¢) >0, for any z € O.

Proof. We divide the proof into four claims.
Claim 1. {z,} is a bounded sequence.
Since a,, — 0 as n — 00, we may assume, without loss of generality,
that a,, < ||D||7', Vn > 1. Then, a, < %, VYn > 1. By Lemma 2.8,
1l —a,D|| <1—a,7.

Since D is a strongly positive bounded linear operator therefore
(Dx,x) = 7|z||* and ||D]| = sup{|{Dz,x)| : € Hy, [|z|| = 1}.

Now, we observe that

(1 =B — ap,D)x, x) 1— B, — an(Dx,x)

Z 0, Vx € Hl.
This shows that (1 — 3,)I — a,, D is positive. It follows that
(1 = Bu)l = an DIl = sup{[{((1 = fu)] — anD)z,z)| -

x € H17 HZEH = 1}
sup{l — B, — an(Dz,x) : x € Hy, |z|| = 1}
1 - /Bn - anﬁ'

(3.2)

IN

For any x,y € C, we have
I(I = puB)z = (I = puB)ylI* = |l(x = y) — pu(Bz — By)|*
< lz =yl = 2un{z — y, Bx — By)
+iy|| Bz — By||*
(3.3) = ylI*.
This shows that the mapping I — i, B is nonexpansive.
Let for each i = 1,2,..., N, q := Po(vf + (I — D)). Since f is a

contraction mapping with constant o € (0,1), it follows that for all
T,y € H,

IN
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lg(I =D +~f)(x) —qI =D+~f)yl < [[(I =D +~vf)(x)

—(I =D+~

11 — D|l[|x -yl

+ylf () = fFW)l

< A=)z -yl
+yallz -yl

< T=-GF=va)lz -yl

Therefore the mapping ¢(I — D + ~vf) is a contraction mapping from
H, into itself. It follows from the Banach contraction principle that
there exists an element z € H; such that z = ¢(/ — D + vf)z =

PN ([ —D + ’)/f)Z
'D1 Fix(T;) NN

IN

Let pe © := ﬂFlX( T,)NTNQ, ie., pel, we have
—Tr(n”mpand Ap T F202) (Ap)

We estimate

lun = plI* = T (@, + 64T — ) A) =l
< || TS (2, + GA* (T2 — T) Az, — TF90p)|2
< + GAT (T2 — ) Az, — p|?
< e = pl* + AT — 1) Az |?
(3-4) +26(x, — p, A" (T @) _ ] 1) Az,).

Thus, we have

lun =l <l = pll® + (T2 = 1) Awa, AA(TI>%) — 1) Awa)

(3.5) +26(x, — p, AN (T 292 — I)Az,,).
Now, we have
S((T 29 — T) Ax,,, AA*(TF>%2) — ) A,,)
< L52<(T§f2’¢’2) — D) Ay, (T[> — ) Au,)
(3.6) = L&*|[(T>9) — I) Ax, 2.
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Denoting A := 26(z, — p, A*(T\/>%) — I Az,) and using (2.8), we have

(3.7)

26(z, — p, A*(T">%2) — 1) Az,,)
20(A(x, — p), (TF292) _ ) Ax,,)

Tn

20(A(z, — p) + (T\F2%) — ) Az,

Tn

—(TF2%2) — 1) Az, (T">%) — I) Az,)

Tn

25{ (TP Ay, — Ap, (T\F29) — I) Az,)

(@20 — 1) Az |2}

Tn Tn

1
20{ SITE — D Aw|* = (T4 — 1) Aw, |}
—S||(T %) — I) Az, ||

Tn

Using (3.5), (3.6) and (3.7), we obtain

(3.8)

= plI* < llzw = pl* + 6(L8 = DT> — 1) Az

Since, d € (0, 1), we obtain

(3.9)

[l = pII* < llwn — pII*.

By using(3.3), we have

(3.10)

HPC(I - UHB)un - p”
||(I - MnB)un - (I - ,unB)p”
[un — pl|-

yn — Dl

IA A
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Further, we estimate

|Zni1 —pl] = oy f(Knzn) + Buzn + (1 — Bu)] — 0y, D) Kyy, — D
= |lan(vf(Knzn) — Dp) + Bu(wn — p)

+((1 - 671)] - anD)(Knyn - p)”

an ||V f(Knwn) — Dpl| + Bull, — pl|

||V f (Knzn) —vf(p) +7f(p) — Dpll + Bullzn — pll

+((1 = B — an¥)lyn — pll

(using nonexpansivity of K,,)

|| f(Knzn) — f(0) + cnllvf(p) — Dpll

+Bnllzn — pll + (1 = Ba) — )| — pll

(using (3.9) and (3.10))

anyel|lz, — pll + anllvf(p) — Dp

+(1 = ay)||zn — pl|

(1 = an(7 = ya)lzn = pll + anllvf(p) — Dpll

max{ |z, — p||, PLE=LEY p > 0.

IN

IN IN

IN

(VANVAN

By induction, we have

|vf(p) — Dpl|
|Zn+1 — pl| < max{||zo — p||, ————}.
¥ — o

Hence {z,} is bounded, so {y,}, {K,y.} and {f(K,x,)} are bounded.

Claim 2. lim,, o ||Tp1—2,|| = 0, limy, oo ||2n—EKpyn|| = 0, lim, o ||, —
z,|| = 0 and lim,, o ||ty — ya|| = 0.

Since T, ;ﬁfbl) and T;ﬁ;m) both are firmly nonexpansive, they are av-
eraged. For § € (0, 1), the mapping (I + SA*(T>9?) — 1) A) is av-
eraged. It follows from Lemma 2.3(ii) that the mapping 7, ,«(ﬁfn)([ +
IA*(T, 7,(531@) — I)A) is averaged and hence nonexpansive. Further, since

Uy = T (2, + SA* (T — ) Az,) and sy = T,Sﬁf”(an +
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IA*(T, rfflm) — I)Ax,1), it follows from Lemma 2.14 that

[tn1 —unll < Hquﬁim (Tnt1 + 5A*( F2 ¢2) — 1) Azp41)
—T o0 (2, + AX(T, F+¢ — D) Az,)|
+||T(F1 ¢1)<$n +5A*< Fz ¢2 _ )A:L‘n>
T(F1 ¢1)(x + (5A*( F2 ¢>2 )AiUn)H
< Hxn-&-l - $N|| + ||(a7n + 5A*( F2 ¢2 - )Axn)
—(zn + 5A*(T(F2’¢2) -1 xn)H
+’1—— ||TF1¢’1 (mn—l—éA*( T(F2:62) _ I)Ax,)
T+
—(y + OAT (L — 1) Aa)|
< ||35n+1 $n||
O AT 2% Az, — TU%) Az, || + 6,
< H35n+1 J?nH
+0|| Al ‘1 — Tﬁf? Az, — Az, || + 0,
(3.11) < ZTn1 — ol +5||A||Un+5m
where
on = |1— | T A — A
Tn—l—l
5 = |1— 1T (2, + SAH (T — 1) Az,
rnJrl

—(z + SAH(T>%) — [ Az
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We estimate

[Ynt1 —vnll = [[Pe(I = pps1B)tngr — Po(l — pnB)us||

< T = pna B)ungs — (I = pn B)un||

= H(I - ,Un+1B)un+1 - ([ - ,un+1B)un
+(Hn — pnt1) Buy |

< tngr = |l + [t — o ||| Bun ||

< Jentr =zl + 0l Allon + 0n + |in = pnsa || Bun||
(using (3.11))

(3.12) < lena = zall + Ol Allon + 0n + Ml pn — pnsal,

where My = sup,,>; || Bu,||.

Setting xn+1 = (1 — Bn)ln + Bntn, then we have I, = wn+11:ﬁinxn and

Oén+1’Yf(Kn+1In+1)+((1 ﬂn+1)1 At 1D)Knt1ynt1

—Bn+
an’Yf(Knxn) (( Bn)l an D) Knyn

= (104%:11)(7]7( n+1=’fn+1) DEKy1Ynt1)
(554 (DK g — 1 (K)
+Knp1Ynt1 — Knyn

= <1ag+il>(7f( n+1xn+1) - DKn+1yn+1)
+<1 B V(DK Y — v f (Knzn))
+Kn+1yn+1 - Kn—l-lyn + Kn+1yn - Knyn-

ln—l—l - ln =

Thus,

n+1
[l — ]l < 1_5 (v f (Knsrznn) | + [ DKy )

+

/Bn(HDK”y”H + 7 f (Knzn) D)

+HKn+lyn+1 - Kn+1ynH + HKnJrlyn - KnynH

Ant1
T g (Il f i)l + 1D Ky

+

IN

B DK nynll + lI7f (Kna) )
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Next, we estimate || Kp11Yn — Knynll-
Fori € {2,3,...,N — 2}, we have

||Un+1,N—iyn

(3.14)

and

|| Un+1,1yn - Un,lynH

(3.15)

where

IA

Un,N—z‘ynH

At N—i TN—iUns1iN—ic1Yn + (1 = M rn—i) Unt 1. N—i—1Yn
_)\n,NfiTNfiUn,Nfiflyn - (1 - )\n,Nfi)Un,NfiflynH
A1, N—i TN —iUng1,N—i—1Un — A1, N—i TN —iUn N—i—1¥Yn
F i1 N TN Un N—i1Yn — Ang1,N—i)Un N—ic1Yn
FAnp1N—i) Unn—ic1Yn + (1 = Mgy N—i) Unp1, N—i—1Un

— M N—i TN Un n—ic1Yn — (1 = Xy n—i) Un o N—ic1 Y|
At NoillTN—iUns1 N—ic1Yn — TN—iUn.N—i—1Yn]]

+(1 = N N—) | Uns1 N—im1Yn — Un N—i—1Un ||

H A 18— — Man—il | TN=iUn N—iz1Un |

| Ang1,v—i = An =i |Un,N—i—1¥n |

NUns1,8-i—1Yn — Un N—ic1Yn|| + M3| A1, N—i — A v

A1 71y + (1 — Xt1.1)Yn

A1 Tiyn — (1 = A1) Ynll

[Ant11 = At [ T3yl + [An11 = An
|Ant11 — Ana| Mo,

Y]

IN A

N
My = sup{d i, (I TiUniaynll + [|Uniaynll) + I Tnll + lynll} < oo.
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By (3.14) and (3.15), we have

HKn+1yn - KnynH = HUnJrl,Nyn - Un,NynH
< NUns1,MYn — Un.nyUnll + Ma|Aii v — A |
< ||Un+1,Nzyn - Un,NzynH

+Mo| A1 N—1 — Ann—1] + Ma| At v — Ann]

N
< NUns11Yn — Unaynll + Mo Z | Ans1i — Anil

=2
N
(3.16) < My [Angri = Anal.
=1

Using (3.12) and (3.16) in (3.13), we have

o1 =l < ﬁ.lg—:il(HVf(KonnH)H + | DEps1yn1l])
+125 (1D Ky + (7 (Knzn)])
H@nt1 — @all + 0[|Allon + 0n + Mi|pn — fins1]
+M2 Zf\il ’)‘nJrl,i - )‘n,i|

and hence
a1 = lall = lzns — 2l < 55 (I (K|
I DKni1yniall) + 125 ([ DEnynl
+7f (Knza)|l)
+0|Alloy + 6n + M |pn — fog1]
+M; Zzzil |>‘n+1,i - )‘n,i"

Taking lim sup and using the conditions (i)-(v), in above inequality, we
have

lim sup(||lp+1 — lnl] — [|Zns1 — zal]) < 0.
n—oo

By Lemma 2.7, we have

(3.17) lim [|I, — z,| = 0.
n—oo

Since x,11 = (1 — Bn)ln + Pnxy, therefore
[Zns1 — 2l = [[(1 = Ba)(ln — ) |l.
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This implies that

(3.18) lim ||z,41 — x| = 0.
n—oo
Now,
|2n — Knynl |l Tn — Tpi1 + Tngr — Knynl|

IA I

[Znt1 — ool + [any f (Knzn) + Butn

+((1 = Bu) — anD)Kyyn — Kyl
= [lznir = 2l + llom (7 (Knzn) — DKy )|

+((1 - 671)] - anD>(Knyn - Knyn) + 571('1;71 - Knyn)
S ”xn—I—l - xn” + O‘nH’Yf(Knl'n) - DKnynH

+Bn”xn - Knyn“

Thus,

(1 - Bn)”xn - Knyn” S ||:En+1 - xn” + an”’}/f(Knmn) - DKnynH

Taking limit and using the conditions (i)-(ii) and (3.18) in above inequal-
ity, we have

(3.19) lim ||z, — K,y.| = 0.
n—oo

As {z,} is bounded, we may assume a nonnegative real number K such
that ||z, — p|| < K. It follows from (3.8) and (2.8) that

[Znt1 — p||2 = |lan(vf(Knzn) — Dp) + Bu(zn — Knyn)
+(1 = D) (Kuyn — )|*
I(1 = an D) (K — D) + Bulwn — Knyn) ||
+2(any f(Knn) — Bp, Tpy1 — p)
[I(T = anD)(Knyn — )| + BullTn — Knunl|]2
+200 (V[ (Kn2n) — Dp, Tni1 — p)
(1 = n¥)|Yn — pll + Bullzn — Knyn||]2
+2a, (7 f (Kpxn) — Dp, Tpy1 — p)

= (L= an®)?llyn = plI* + Bllwn — Kaynl®

+2(1 = an¥)Bullyn — 1l

(3.20) x[|@y — Knynl| + 200, (v f (Knn) — Dp, Tny1 — p)

IN

IN

IN



121 = plI®

Therefore,

IN

IN
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(1= ay)*[lon = plI? + 8(L6 = DT> = I) Ay ||
— Koy |* +2(1 = %) Bullyn — pll 120 — Knynl
+20, (v f (Kpxn) — Dp, Ty — p)

(1 = 20,7 + (7)?)l|2n — plI®

+(1 — 0, 9)%6(L6 — V(T — I) Az, |?

B0 lzn — Knynll® +2(1 = @0¥) Ballyn — pllllzn — Knynl
+2a, (v f(Kpx,) — Bp, xpi1 — p)

[2n = pl* + (n¥)?)ll2n — plI®

+(1 — 0, 7)20(L8 — D (TH™% — 1) Az, |2

+5,%||33n - Knun”2 + 2(1 — ) Bullyn — plll|2n — Koyl
+2an<7f(anL‘n> - Dp7 Tpy1 — p)

(1 - a,9)°5(1 — LE) (T — 1) Aw, |

< |lzn = plI* = llznss — pll?

+ Ballen — Kyl + ¥’ |20 — pll?
+2(1 = @) Bullyn — pllllTn — Knynll
+ 20, (V[ (Knp) — Dp, Tpg1 — p)

< ([lon = pll + |zn1 = pID |20 — Zpiall
+ Ballen — Kyl + ¥’ |2, — plI?
+2(1 = an) Bullyn — pllllzn — Kyl
+ 20, (V|| f (Knzn) || + || Dl K.

Since 6(1 — LJ) > 0, ||[zpy1 — x| — 0 and ||z, — K,yn|| — 0 as n — o0
and from conditions (i) and (ii), we obtain

(3.21)

lim |[(T%292) — ) Az,||*> = 0.

n
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We estimate

v — pII”

Hence, we obtain

(3.22)

IN A
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T -+ 64° (T — 1) Aw,) — P
||T(F1’¢1)(x _|_5A*(T(F2,¢z _ )Ax ) F1 $1) p||2
(U — p,xp + OA™(T>%) — 1) Az, — p)

1
S ln = I + o + 64T ) — 1) A, — p?
| = p) = [ + FA" (TS — 1) Az, — p]|2}
1

5 ln =PI+l = ol

~lun = = S (T — 1) Ay |2}
1

5{ln = pI + Il = ol

—[lun = za|? + AN (T2 — ) A, ||?
— 20y, — i, AT(T202) — I)A:cn>]}.

= plI* < Nl = pl* = llwn = @al® + 26| A — ) [T = I) Az

From (3.20), we obtain

1241 — pI*

(3.23)

<

IN

IN

(1 - Oén'_7>2Hyn - sz + ﬁ?m”%l - KnynH2

+2(1 = an¥) Bullyn — pllllzn — Knynl

+20, (Y (Kn20) — Dp, Tpi1 — p)

(1= an¥)?[lzn — plI? = [l — 20|

+20]| A(un — ) || (T292) — ) A

+5721||xn - KnynH2 + 2<1 - an7)5n|lyn - pHHQ:n - Knyn”
+2a, (v f(Kpxn) — Dp, i1 — D)

20 = plI* + ()220 — plI* = (1 = an¥)?(|un — 20|
+2(1 — an7)*8 || A — ) |[|[(T>%) — 1) Az
+02 a0 — Kyl +2(1 — aw)ﬁnllyn — pllllzn = Knyal
+20, (Y f(Kn2s) — Dp, Tpi1 — p).-
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Thus,

IA

lzn = pII* = 2041 = plI*

+53L||1’n - KnynH2 + (an7)2||$n - sz
+2(1 - O‘n;}/)ﬁnuyn - pHHxn - KnynH
+2(1 = @ 7) 0| A(un — )|
<(TE>) = 1) A
+2a, (v f(Kpxn) — Dp, Tpi1 — p)
(lzn =l + lZns =PI %0 = T |
"‘BZ”xn - KnynH2

+2(1 = @ 7) 0| Alun — )|

X (T — 1) A |

+(7)? [z — pl?

+2(1 = an¥) Bullyn — pllllzn — Knynll
(3.24) + 200, (V|| (Knzn) | + [| Dpl]) K.

(1 = an¥)?|fun — 20

IN

Using (3.18), (3.19), (3.21) and conditions (i)-(ii), we have
(3.25) lim |lu, — 2, = 0.
n—oo

Next, we prove lim, oo ||tn, — yn| = 0.

We estimate

||£L'n+1 - p||2 - ||Oén’7f(Knxn) + ﬂnwn + ((1 - Bn)l - anD)Knyn - p”2
= (1 = Bo)(KpYn — p) + Bulzn — p)
+an (Vf (Knwn) = DEuya)|®

< (1= Bu)lIKnyn = pl* + Bullzn — pl?
+20,{pn, Tni1 — D)
< (1= Bl Knyn — pH2 + Ballzn — pH2 +2X %,
(3.26) < (1= Bu)llyn = lI* + Ballzn — plI* + 2X 2.
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In the above inequality we set p, = vf(K,x,) — DKy, and let A > 0
be an appropriate constant such that A > sup,, . {||pnll, [z — p||}. Thus,

||In+1 - p”2 < (1 - ﬁn)“yn - p”2 + Bonn - p”2 +2X%a,

< (1= B ){llPe(un — ptnBuy) — Po(p — 1 Bp)||*}
+BnllTn — p||* + 222,

< (1= Bu){llun — 2I* + pta(pin — 27)|| Buy, — Bpl|*}
+Bnllrn — p||* + 222,

< (1= Bu){llzn — 2l* + pta(pin — 27)|| Buy, — Bpl|*}
+Bnllzn — p||* + 2X\ %0,

< (1= Bu)pin(ptn — 27)||Bu,, — Bpl?

Hlzn —pll* +2Xan
which yields,

(1 = Bu) (27 = pn)|| Buy, — Bp||? 2 = plI* = [lznes = plI* + 2X %ay

(lzn = pll + l|#ns1 —plD)
X |2 — Tpga ]l + 2X% .
Using conditions (i)-(ii) and (3.18), we have

(3.27) ILm || Bu,, — Bp|| = 0.

By using (2.8), we estimate

lyn =PI = |Po(un — pnBun) — Pe(p — pnBp) |
S <yn =D (un - ,unBun) - (p - HJan))
< 3{llyn = plI* + [I(un — pn Buy)
=P = i BP)I* = 1(yn — tn) + pin(Buy — Bp)|[*}
< 3{llyn = pIPP + llun = pl* = [(yn — un) + pa(Bun — Bp)||*}
< lun = plI* = llyn — wnl® = w1 Bun — Bp||®
+2,un<yn — Unp, Bun - Bp)
< lun =PI = 140 — tnll® + 24|y — wnlll| Bun — Bpl|
<l =2l = 19 — wnll® + 2pllyn — valll Bun — Bpll.

From (3.26), we have

< (L= Bullyn = pIP A+ Bullzn = p* +2Xa
< (1= Bu{llzn = plI* = llyn — unll
+2:un”yn - unHHBun - Bp“} + Bonn —p||2 + 2)\20471

121 = pII®
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which yields

(1= B)llyn = unl® < lwn = plI* = |20 41 — pl|* ,
+2(1 = B)panllyn — unl||| Bun — Bpl| + 2\ %ay,

(lzn =Pl + llznss = P2 = Znsa|
+2(1 = Bu)pnllyn — unl|| Bun — Bpl| + 2 %ay,

Using conditions (i)-(ii), (3.18) and (3.27), we have
(3.28) lim ||y, — u,|| = 0.
n—oo

IA

Claim 3. We show that limsup,_,. ((7f — D)z,x, — 2) < 0, where
z = Po(I — D+~f)z. To show this inequality, we choose a subsequence
{un,} of {u,} such that
(329) L sup (] — B)z tn — 2) = lim (v — B)2,t, — 2).

n—00 1—00

Since {u,} is bounded, there exists a subsequence {uy,,} of {u,} which
converges weakly to some w € C. Without loss of generality, we can
assume that u,, = w. From ||K,y, — x,|| — 0, we obtain K,y,, — w.

Now, we prove that w € Sol(GEP(1.6)).

Since u,, = Tﬁfl’(bl)dn where d,, := x,, + 5A*(T,Sf2’¢2) — I)Ax,, we have

1
Fl(umy) + ¢1(y7un) - le(umun) + T_<y — Up, Up — dn> 2 07 Vy € Ca

n

which implies that
¢1(yaun) - ¢1(un,un) + L<y — Up, Up — dn> Z Fl(ya un)a Vy € C,

Tn
(using monotonocity of F}).

Hence,
(3.30)

Qsl(yaunk) - d)l(unkaunk) + <?J — Unys %) 2 Fl(y7unk)7 \V/y eC.

ng
Let yy = (1 — t)w + ty for all t € (0,1]. Since y € C and w € C, we get
y: € C and from (3.30), we have
0 < Fi(ys, tn,) — O1(Y, Un,,) + ¢lggn£7)unk)
2:92) _ Tn
_<yt — Uy, , “”k;x"k + 5A*(w

Tnk
np Tng

))-
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Since A* is bounded linear, it follows from (3.21), (3.25) and liminf r,, >

Up, — 111292 _1) Az,
0 that —2— 2" _y ( and A*(ms D4

e ) — 0 and so
/r‘n

T‘nk

O1(Ye, w) — d1(w, w) < Fy(ys, w).

k

Now, for ¢ > 0,

0 = F1<yt7yt)
= thi(y,y) + (1 =) Fi(y,w)
> tFi(y,y) + (1= 8)[d1(ys, w) — g1 (w, w)]
> tFi(yy) + (1 =)t (y, w) — 1 (w, w)]
> Fi(ysy) + (1 =1)[o1(y, w) — ¢1(w, w)].

Letting ¢ — 0, we have
Fl(wvy) + ¢1(y7w) - ¢1(w7UJ) Z 07 \V/y € C.
This implies that w € Sol(GEP(1.6)).

Next, we show that Aw € Sol(GEP(1.7)). Since ||u, — 2| = 0, u,, —
w as n — oo and {z,} is bounded, there exists a subsequence {x,, } of
{z,} such that z,, — w and since A is a bounded linear operator so
that Az,, — Aw.

Now setting v, = Ax,, — T,«fQ %) Az, . Tt follows that from (3.21) that

(F
khm U, = 0 and Az, —v,, = Trn: #2) Az, .
—00

Therefore, from Lemma 2.13, we have
F2<A$nk - U?mz)_"gbl(zaunk) _¢1(unwunk)
+ —(z— (Azp, —vp,), (Azy, — vy, ) — Az, ) >0, V2 € Q.

Tng

Since F5 is upper semicontinuous in first argument, taking limit superior
to above inequality as k — oo and using condition (iii), we obtain

Fy(Aw, z) + ¢1(2,un, ) — ¢1(tn,, un,) >0, V2 € Q,
which means that Aw € Sol(GEP(1.7)) and hence w € T'.
Next, we prove w € (., Fix(T}).

Let K be the K-mapping generated by 71,75, ..., Ty and Ai, Ao, ..., An.
Then by Lemma 2.11, we have, for every x € C,

(3.31) K,,x — Kzx.
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Moreover, from Lemma 2.10,
N
Fix(K) = (| Fix(T3).
i=1

Suppose for contradiction w ¢ Fix(K). Then w # Kw. From (2.6),
(3.19) and (3.31), we have

liminf; o ||yn, — Kw||
Hminf; oo (|| Yn; — Koy Y|
liminf; o ||yn, — ||,

lim inf; o [|yn, — ||

IN A

VARIVAN

which derives a contradiction. Thus, we have w € Fix(K). Thus w €
ﬂfil Fix(T;).

Next, we prove w € €. Since lim,, o ||tn —yyn|| = 0 and lim,, o ||, —
z,|| = 0, there exist subsequences {u,,} and {y,,} of {u,} and {y,},
respectively such that w,, = w and y,, — w.

Define the mapping M as

(3.32) M(z) = { 5(;) ;-géNgfz), if 2 € C,

where Ne(z2) := {v € Hy : (z —u,v) > 0, Yu € C} is the normal cone
to C' at z € Hy. In this case, the mapping M is maximal monotone
and hence 0 € Mz mapping if and only if z € Sol(VIP(1.2)). Let
(z,v) € graph(M). Then, we have v € Mz = Bz + N¢(z) and hence
v— Bz € No(z). So, we have (z —u,v — Bz) >0, for all u € C. On the
other hand, from vy, = Po(u, — p,Bu,) and z € C, we have

This implies that

Yn — Up

n

(z — Yn, + Bu,) > 0.
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Since (z —u,v— Bz) > 0, for all u € C' and y,, € C, using monotonicity
of B, we have

<Z—?Jn“U> 2 <Z_yn1aBZ>
Yn, — Unp,
Z <Z - yanZ> - <Z — Yn;s —_—+ Bunz)
= <Z — Yn;» Bz — Bynl> + <Z - ynleyni - Bum)
Yn; — Unp,
fin
Yn; — Un,

Since B is continuous therefore on taking limit ¢ — oo, we have (z —
w,v) > 0. Since T is maximal monotone, we have w € T~1(0) and hence
w € Q. Thus w € ©.

Next, we claim that lim sup ((vf — D)z,z, — z) < 0, where z =

n—oo

Po(I — D +~f)z. Now from (2.3), we have

lim sup <(7f - D)Zaxn - Z> = lim sup <<7f - D)Zv Knyn - Z>

n—00 n—00
< limsup((vf — B)z, Knyn, — 2)
i—>00
= (W = B)z,w—=z)
(3.33) < 0
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Claim 4. Finally, we show that x,, — w. Using (3.9) and (3.10), we

estimate

i1 — wlf?

This implies that

IN

IN

IA

IN

IN

(an(Vf(Knzn) — Dw) + Bu(zn — w)

+((1 = Bu) — an D) (Knyy — w))

O‘n<'7f(Kn$n) — Dw,zpq1 — w) + 5n<xn —W,Tp4+1 — w>

(1 = Bu)] — an D) (Knyn — w) — w)

an (Y(f (Knzn) = f(w0), 2p11 — w) + (7 f(w) = Dw, 2py1 — w))
+Bnllzn — wll|2nir — wl]

+[|(1 = Bn)] — an D[ Knyn — wlll|znsr — w]|

anayllzn — wlllzn — wll + an(yf(w) = Dw, 2n 1 — w)
+Bn||$n - w” Hxn—l—l - w” + (1 — B — anW)Hyn - w”Hxn—f—l - w”
anayl|lzn — wlllzn — wll + an(yf(w) = Dw, 2p 1 — w)
+Bullzn — wll[|@nr1 — wll + (1 = By — an¥)[|zn — w|[[|[ 2041 — w]|
1 —an(y = yo)lllzn — wlll|znsr — wl|

+a, (vf(w) — Dw, 2y — w)

1— o, (7 — vy«

D239, — wl® + s — wl?)
+an<r7f(w) - Dwaxn-i—l - w)
1 _an(ﬁ_}/_’y&) 1

T N P

+Oén<7f<w) - Dw7 Tl — w)

(3:34) oo —wl* < [1—an(y —ya)zs — wlf*

+2a, ((vf(w) = Dw, 211 — w)
= [1—a,(y —v)ll|zn, — wH2 + 2o, M, .

o
Since lim a,, = 0 and > «a, = oo, it is easy to see that lim sup M,, < 0.

n—oo

n—0o0

n=0
Hence, from (3.33), (3.34) and Lemma 2.9, we deduce that =, — w,
where w = Pg(I + v f — D). This completes the proof.

]
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Finally, we have the following consequence of Theorem 3.1, which
is obtained by taking A = I, Hy = Hy,C = Q,F, = F5,01 = ¢ in
Theorem 3.1.

COROLLARY 3.2. Let Hy, be a real Hilbert space and let C be a
nonempty closed convex subset of Hy. Assume that F} : C x C' — R
and ¢, : C'x C'— R be nonlinear mappings satisfying Assumption 2.12.
Let T; : C — C' be a nonexpansive mapping for each i = 1,2, ..., N such

that © = ﬁFiX(Ti)ﬂSOI(GEP(l.G))ﬂQ # 0. Let f : H — Hy be
i=1

a contraction mapping with constant a € (0,1) and D be a strongly
positive bounded linear self adjoint operator on Hy with constant i > 0
such that 0 < v < g <v+ é Let B : C'— H; be a T-inverse strongly
monotone mapping. For a given xy € C arbitrarily, let the sequences
{un}, {z,} and {y,} be generated by the following iterative schemes:

un = T (@);
Yn = Po(un — p"B(uy))

Tp+1 = an7f<Knxn) + ﬂnxn + ((1 - Bn)[ - anD)Knyna

where {p,} C (0,27) and {a,,}, {Bn}, {ran} are sequences in (0,1),
and A1, Ao, ..., Ay be real numbers such that 0 < \; < 1 for every 1 =
L,2,.,N—1land 0 < Ay <1, \,; = N(i = 1,2,...,N) satisfying the
following conditions:

(1) hmn—>oo a, =0, ZZOZD Qn = O0;
(ii) 0 < liminf, o B, < limsup,,_,. B < 1;
(iii) liminf, oo 7, > 0 and lim, o0 |71 — 70| = 0;
(iv) 0 < liminf, o pt, < limsup,, . pn < 27 and lim, o0 |fny1 —
fin| = 0;

(V) ZZO:O |)\n,z — >\n—1,i| < 00, Vi = ]., 2, . N.
Then the sequence {x,} converges strongly to some z, € ©, where z, =
Po(vf + (I — D))z, which solves the following variational inequality:

(D —=~f)zs,2 — 24) >0, for any z € O.
The following corollary is due to Kangtunyakarn and Suantai [10],

which is obtained by taking A = I, H; = Hy,C' = Q, Fy, = F5, 1 = ¢
and B = 0 in Theorem 3.1.
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COROLLARY 3.3. Let H, be a real Hilbert space and let C be a
nonempty closed convex subset of Hy. Assume that F; : C x C — R
be a nonlinear mapping satisfying Assumption 2.12. Let T; : C —
C be a nonexpansive mapping for each i = 1,2,..., N such that © =

N
N Fix(T;) (" Sol(EP(1.3)) # 0. Let f : Hy — H;, be a contraction
i=1

mapping with constant o € (0,1) and D be a strongly positive bounded
linear self adjoint operator on H; with constant 7 > 0 such that 0 <
v <1< y+21 Foragiven g € C arbitrarily, let the sequences {u,,},
{z,} and {y,} be generated by the following iterative schemes:

_ (F1) .
un - T”’n ($n>a
Tpr1 = oV f(Kpzy) + Buxn + (1 — 6o)I — D) Ky,

where {ay, }, {Bn}, {rn} are sequences in (0, 1), and Ay, Ag, ..., A\xy be real
numbers such that 0 < \; < 1 foreveryi =1,2,.... N—1l and0 < Ay <1,
Ani — Ni(i = 1,2, ..., N) satistying the following conditions:
(1) hmy oo iy =0, D07t = 00;

(ii) 0 < liminf, o B, < limsup,,_,. B < 1;
(iii) liminf, oo 7, > 0 and lim, o |71 — 70| = 0;

(IV) ZZO:O |)\n,z — )\nfl,i| < 00, Vi = 1, 2, e N.
Then the sequence {x,} converges strongly to some z* € ©, where z* =
Po(vf + (I = D))"
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