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STRONG CONVERGENCE THEOREM OF

COMMON ELEMENTS FOR EQUILIBRIUM PROBLEMS

AND FIXED POINT PROBLEMS

Lijuan Zhang and Zhibin Hou

Abstract. In this paper, we introduce an iterative method for finding

a common element of the set of solutions of an equilibrium problem, the
set of common fixed points of an asymptotically strictly pseudocontrac-

tive mapping in a Hilbert space. We show that the iterative sequence

converges strongly to a common element of the two sets.

1. Introduction

Let H be a Hilbert space and C be a nonempty closed convex subset of H.
Let f be a bifunction of C×C into R, where R is the set of real numbers. The
equilibrium problem for f : C × C → R is to find x ∈ C such that

f(x, y) ≥ 0,∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (f). Given a mapping T : C → H,
let f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then, x̂ ∈ EP (f) if and only if
〈T x̂, y − x̂〉 ≥ 0 for all y ∈ C, i.e., x̂ is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics reduce to find a
solution of (1.1). Some methods have been proposed to solve the equilibrium
problem; see [1].

A mapping T : C → C is said to be asymptotically λ-strictly pseudocon-
tractive if there exist λ ∈ [0, 1) and a sequence {kn} with kn ≥ 1 for all n and
limn→∞ kn = 1 and such that ‖Tnx−Tny‖2 ≤ kn‖x−y‖2 +λ‖(I−Tn)x−(I−
Tn)y‖2 for all n ≥ 1 and x, y ∈ C. This class of mappings has been studied by
several authors, and it includes the important class of asymptotically nonexpan-
sive maps (λ = 0). It is well known that if T is asymptotically strictly pseudo-
contractive, then T is uniformly L-Lipschitzian, i.e., ‖Tnx−Tny‖ ≤ L‖x− y‖,
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see [2]. A point x ∈ C is a fixed point of T provided Tx = x. Denoted by F (T )
the set of fixed points of T .

Recently, many authors studied the problem of finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions
of an equilibrium problem; for instance [3]. Inspired and motivated by these
facts, we prove strong convergence theorems for finding a common element of
the set of solutions of an equilibrium problem and the set of fixed points of an
asymptotically strictly pseudocontractive mapping.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. {xn} is
a sequence in H, xn ⇀ x implies that {xn} converges weakly to x and xn → x
means the strong convergence. In a real Hilbert space H, we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, (1.2)

for all x, y ∈ H and λ ∈ [0, 1]. Let C be a nonempty closed convex subset of
H. Then, for any x ∈ H, there exists a unique nearest point in C, denoted by
PCx, such that

‖x− PCx‖ ≤ ‖x− y‖,∀y ∈ C.
Such a PC is called the metric projection of H onto C. We know that PC is
nonexpansive. Further, for x ∈ H and z ∈ C, z = PCx ⇔ 〈x − z, z − y〉 ≥ 0
for all y ∈ C. We also know that for any sequence {xn} ⊂ H with xn ⇀ x, the
inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with x 6= y;
For solving the equilibrium problem for a bifunction f : C × C → R, we

assume that f satisfies the following conditions:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

Lemma 2.1. ([4]) Let C be a nonempty closed subset of H and f be a bifunction
of C×C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists
z ∈ C such that

f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C.

Lemma 2.2. ([5]) Assume that f : C ×C → R satisfies (A1)-(A4). For r > 0
and x ∈ H, define a mapping Φr : H → C as follows:

Φr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0,∀ y ∈ C}
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for all x ∈ H. Then the following hold:
(1) Φr is single-valued;
(2) Φr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Φr(x)− Φr(y)‖2 ≤ 〈Φr(x)− Φr(y), x− y〉;
(3) F (Φr) = EP (f);
(4) EP (f) is closed and convex.

Lemma 2.3. ([6]) Let E be a real q-uniformly smooth Banach space which
is also uniformly convex. Let C be a nonempty closed convex subset of E
and T : C → C an asymptotically k-strictly pseudocontractive mapping with a
nonempty fixed point set. Then (I − T ) is demiclosed at zero.

Lemma 2.4. ([7]) Let H be a real Hilbert space. Given a closed convex subset
C ⊂ H and points x, y, z ∈ H. Given also a real number a ∈ R. The set
D := {v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a} is convex and closed.

3. Main result

Theorem 3.1. Let C be a bounded closed convex subset of a real Hilbert space
H. Let T : C → C is an asymptotically λ-strict pseudocontraction mapping.
Let f be a bifunction from C × C into R satisfying (A1)-(A4). Assume that
{αn} is a sequence in (0, 1) satisfying the condition: 0 < a + λ ≤ αn ≤ 1 −
b,∀n ≥ 0 and for some a, b ∈ (0, 1), {rn} ⊂ [m,∞) for some m > 0. If
F := F (T ) ∩ EP (f) 6= ∅, then the sequence {xn} generated by

x0 ∈ C,
yn = αnxn + (1− αn)Tnxn,

un ∈ C such that f(un, y) +
1

rn
〈y − un, un − yn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖un − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − λ)‖xn − Tnxn‖2

+ θn},
xn+1 = PCn+1

x0,

(3.1)
where θn = (1 − αn)(kn − 1)(diamC)2 → 0 as n → ∞, converges in norm to
PFx0.

Proof. Firstly, We observe that Cn is convex by Lemma 2.4.
Next observe that F ⊂ Cn for all n. Indeed, for all p ∈ F , we have

‖un − p‖2 = ‖p− Φrnyn‖2

≤ ‖yn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖Tnxn − p‖2 − αn(1− αn)‖xn − Tnxn‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖xn − p‖2 + (1− αn)λ‖xn − Tnxn‖2
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− αn(1− αn)‖xn − Tnxn‖2

≤ [1 + (1− αn)(kn − 1)]‖xn − p‖2 − (1− αn)(αn − λ)‖xn − Tnxn‖2

≤ ‖xn − p‖2 − (1− αn)(αn − λ)‖xn − Tnxn‖2 + θn.

So p ∈ Ck+1. This implies that F ⊂ Cn for all n.
From xn = PCnx0, we have 〈x0 − xn, xn − y〉 ≥ 0 for all y ∈ Cn. Using

F ⊂ Cn, we also have 〈x0 − xn, xn − p〉 ≥ 0 for all p ∈ F .
So, for p ∈ F we have

0 ≤ 〈x0 − xn, xn − p〉
= 〈x0 − xn, xn − x0 + x0 − p〉
≤ −‖x0 − xn‖2 + ‖x0 − p‖‖x0 − xn‖.

This implies that

‖x0 − xn‖ ≤ ‖x0 − p‖.

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have 〈xn+1 −
xn, xn − x0〉 ≥ 0, from the above inequality, we have for all n,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn+1‖‖x0 − xn‖

and hence

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

Since {‖x0 − xn‖} is bounded, limn→∞ ‖x0 − xn‖ exists. Next, we show that
limn→∞ ‖xn+1−xn‖ = 0. In fact that xn = PCnx0 and xn+1 ∈ Cn which imply
that

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= |xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

So we have limn→∞ ‖xn+1 − xn‖ = 0.
Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖un − xn+1‖2 ≤ ‖xn − xn+1‖2 − (1− αn)(αn − λ)‖xn − Tnxn‖2 + θn

≤ ‖xn − xn+1‖2 + θn.

So we have limn→∞ ‖xn+1−un‖ = 0 and limn→∞ ‖xn−un‖ = 0. Observe that

‖yn − xn‖2 = (1− αn)2‖xn − Tnxn‖2 ≤ [‖yn − un‖+ ‖un − xn‖]2

= ‖yn − un‖2 + 2‖yn − un‖‖un − xn‖+ ‖un − xn‖2.
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Since Φr is firmly nonexpansive, for all p ∈ F , we have

‖un − p‖2 = ‖Φrnyn − Φrnp‖2 ≤ 〈Φrnyn − Φrnp, yn − p〉

= 〈un − p, yn − p〉 =
1

2
(‖un − p‖2 + ‖yn − p‖2 − ‖un − yn‖2),

and hence

‖un − yn‖2 ≤ ‖yn − p‖2 − ‖un − p‖2

≤ ‖xn − p‖2 − ‖un − p‖2 + θn − (1− αn)(αn − λ)‖xn − Tnxn‖2.
So we have

(1− αn)2‖xn − Tnxn‖2

≤ ‖xn − p‖2 − ‖un − p‖2 + θn − (1− αn)(αn − λ)‖xn − Tnxn‖2

+ 2‖yn − un‖‖un − xn‖+ ‖un − xn‖2.
Thus

b(1− λ)‖xn − Tnxn‖2

≤ ‖un − xn‖(‖un − p‖+ ‖xn − p‖) + θn + 2‖yn − un‖‖un − xn‖+ ‖un − xn‖2.
Hence limn→∞ ‖xn−Tnxn‖ = 0, limn→∞ ‖xn−yn‖ = 0, limn→∞ ‖un−yn‖ = 0.
Observing that

‖xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ ‖Tn+1xn+1 − Tn+1xn‖

+ ‖Tn+1xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ L‖xn+1 − xn‖+ L‖Tnxn − xn‖.

Hence limn→∞ ‖xn − Txn‖ = 0.
Since {xn} is bounded, there exists a subsequence {xnk

} of {xn} such that
xnk

⇀ x̂. By Lemma 2.3, we have that x̂ ∈ F (T ). From xnk
⇀ x̂, ‖un−yn‖ →

0 and ‖un − xn‖ → 0, we have ynk
⇀ x̂ and unk

⇀ x̂. From rn ≥ m, we have

limn→∞
‖un−yn‖

rn
= 0. By un = Φrnyn, we have

f(un, y) +
1

rn
〈y − un, un − yn〉 ≥ 0,∀y ∈ C.

Replacing n by nk, we have from (A2) that

1

rnk

〈y − unk
, unk

− ynk
〉 ≥ −f(unk

, y) ≥ f(y, unk
),∀y ∈ C.

Letting k →∞, we have from (A4) that f(y, x̂) ≤ 0,∀y ∈ C. For 0 < t < 1 and
y ∈ C, define yt = ty + (1 − t)x̂. Since y ∈ C and x̂ ∈ C, we have yt ∈ C and
hence f(yt, x̂) ≤ 0. So, from (A1) we have

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, x̂)

≤ tf(yt, y).
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Dividing by t, we have

f(yt, y) ≥ 0,∀y ∈ C.

Letting t ↓ 0, from (A3) we have

f(x̂, y) ≥ 0,∀y ∈ C.

Therefore, x̂ ∈ EP (f).
Let w = PFx0. From xn = PCnx0 and w ∈ F ⊂ Cn, we have

‖x0 − xn‖ ≤ ‖x0 − w‖.

Since the norm is weakly lower semicontinuous, we have

‖x0 − w‖ ≤ ‖x0 − x̂‖
≤ lim inf

k→∞
‖x0 − xnk

‖

≤ lim sup
k→∞

‖x0 − xnk
‖

≤ ‖x0 − w‖.

This implies that ‖x0 −w‖ = ‖x0 − x̂‖ and ‖x0 − xnk
‖ → ‖x0 −w‖. It follows

that w = x̂ and xnk
→ w. Therefore {xn} converges strongly to w. �
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