• 제목/요약/키워드: stretchable

검색결과 185건 처리시간 0.022초

신축성 전자소자를 위한 신축성 전극 및 스트레인 센서 개발 동향 (Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics)

  • 박진영;이원재;남현진;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.25-34
    • /
    • 2018
  • In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.

본연적 신축성을 갖는 발광 다이오드 개발 동향 (Advances in Intrinsically Stretchable Light-Emitting Diodes)

  • 고원진;최문기
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.537-546
    • /
    • 2023
  • Intrinsically stretchable light-emitting diodes, composed of stretchable electrodes, charge transport layers, and luminescent materials, have garnered significant interest for enhancing human well-being and advancing the field of deformable electronics. Various luminescent materials, such as perovskites and organics, have been integrated with stretchable elastomers to function as the stretchable emissive layers in these intrinsically stretchable LEDs. Stretchable conductors including Ag nanowire based percolating structures and conducting polymers have been utilized as stretchable transparent electrode. Despite this progress, their performances in terms of efficiency and stability remain challenging compared to their structurally stretchable and rigid LED counterparts. This review offers a comprehensive overview of recent advancements in intrinsically stretchable LEDs, focusing on material innovations.

비스트레치 소재와 스트레치 소재를 이용한 중년여성 재킷 착의적합성 연구 (A Study on Wearing Fitness of Middle Aged Women's Jacket with Non-Stretchable Fabric and Stretchable Fabric)

  • 박지은;김희은
    • 한국의류산업학회지
    • /
    • 제6권4호
    • /
    • pp.485-491
    • /
    • 2004
  • The purpose of this study is to analyze the wearing fitness of middle aged women's jacket with non-Stretchable Fabric and stretchable fabric. We surveyed the size of jackets and process of pattern making with stretchable fabric in companies which produce the clothing mainly for middle aged women. Based upon the result of process of pattern making, two kind of experimental jacket with non-stretchable and stretchable fabric were made. We measured space length between body and garment using 3D scanner and analyzed the clothing pressure 7 parts of body with 3 kinds of arm raising. The result were as follows : 1. Most parts of space length except bust were higher in non-stretchable jacket than in stretchable jacket. 2. Clothing pressure showed greater value with non-stretchable fabric jacket than with stretchable fabric jacket. Clothing pressure in upper arm point areas increased as the angle of the arm raising increased. Therefore, the sleeve width and armhole depth should he considered when the amount of wearing ease were reduced in jacket with stretchable fabric.

차세대 스트레처블 전극의 기술 개발동향 (Technical trend of stretchable electrodes)

  • 이상목;임지은;김한기
    • 진공이야기
    • /
    • 제4권2호
    • /
    • pp.15-23
    • /
    • 2017
  • This article reviews technical trend in research of stretchable electrodes for wearable devices, bio-integrated devices, and stretchable electronics. Stretchable electronics is new emerging class of electronics following flexible electronics. One of the most difficult challenges in the development of stretchable electronic is to realize high performance stretchable electrodes with a low resistivity and high strain failure and stretchability against severe strain of the substrate. For this reason, there are many reports on the promising stretchable electrodes including CNT, graphene, Ag nanowire, and composite materials. We outline the recent research for stretchable substrate and stretchable electrode materials to realize highly stretchable electrodes.

강성도 국부 변환 신축성 기판 위에 제작된 박막 트랜지스터 기반 변형률 센서 (Thin-Film Transistor-Based Strain Sensors on Stiffness-Engineered Stretchable Substrates)

  • 조영민;류경인;정성준
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.386-390
    • /
    • 2023
  • Stiffness-engineered stretchable substrate technology has been widely used to produce stretchable displays, transistors, and integrated circuits because it is compatible with various flexible electronics technologies. However, the stiffness-engineering technology has never been applied to transistor-based stretchable strain sensors. In this study, we developed thin-film transistor-based strain sensors on stiffness-engineered stretchable substrates. We designed and fabricated strain-sensitive stretchable resistors capable of inducing changes in drain currents of transistors when subjected to stretching forces. The resistors and source electrodes of the transistors were connected in series to integrate the developed stretchable resistors with thin-film transistors on stretchable substrates by printing the resistors after fabricating transistors. The thin-film transistor-based stretchable strain sensors demonstrate feasibility as strain sensors operating under strains of 0%-5%. This strain range can be extended with further investigations. The proposed stiffness-engineering approach will expand the potential for the advancement and manufacturing of innovative stretchable strain sensors.

Strategy for Enhancing Functional Density of Stretchable Electronics by Self-Sensing Interconnects

  • Dongwuk Jung;Hunpyo Ju
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.344-352
    • /
    • 2024
  • Stretchable electronics are emerging as next-generation devices owing to their unique deformable characteristics, which allow their application on nonplanar and even deformable surfaces. However, to implement advanced functions in stretchable electronics, conventional rigid components must be integrated to reduce the overall stretchability of these systems. Various design strategies have been proposed to address this challenge. One notable approach involves dividing the electronics into nonstretchable regions for component integration and stretchable interconnector regions that absorb strain. However, stretchable interconnectors, which electrically connect nonstretchable circuits, may reduce the functional density of electronics. In this study, we present a design strategy for self-sensing stretchable electronics by embedding strain sensors within stretchable interconnectors. We provide both computational and experimental evidence demonstrating the advantages of this approach and validate the feasibility of the design by developing a stretchable light-emitting diode (LED) matrix with self-sensing capabilities for measuring the stretching ratio. The results presented herein offer valuable strategies for advancing applications that require stretchable electronics with high functional densities. Moreover, the self-sensing design approach has significant potential for application in proprioceptive electronics.

국내 여성복 브랜드의 신축성 직물 재킷 및 안감 여유분 실태조사 (A Survey on the Ease of Jacket and Lining Fabrics that made of Stretchable Fabrics)

  • 김명옥;서미아
    • 복식문화연구
    • /
    • 제15권2호
    • /
    • pp.265-275
    • /
    • 2007
  • The purpose of this study is to analyze the ease of stretchable jackets which has been common since the mid-1990s and the whole actual conditions in making the lining fabrics. This can be done by investigating the actual conditions of domestic clothes businesses about the consumers. The outcomes of this study are as follows; The result of the survey in the differences of the ease between regular and stretchable fabrics shows that the pattern of designing stretchable fabrics needs diminishing the width of shoulder is 0.42cm, the whole girth chest is 1.83cm, the whole girth of waist is 0.88cm. It also shows that designing the ease of the whole girth of chest is 1.91cm to 2.54cm in the regular lining fabrics and is from 0 to 1.27cm in the stretchable fabrics more than the right side of fabrics. The ease of the whole girth of waist is similar to the round chest, in which the bottom sweep for garment is almost equal to the right side of fabrics in both regular lining fabrics and stretchable fabrics. The result of investigating the actual conditions of making the lining fabrics of stretchable jacket fabrics shows that 80% of a woman's wear brand produces and gives the pattern of the lining fabrics only for the special designing to the cooperative clothes manufactures. The business which always provides the patterns for the lining fabrics in the main office is only limited to 20%. Also, it shows that using the lining fabrics of stretchable jacket fabrics and regular lining fabrics together is 46.7%, the stretchable lining fabrics is 40% and the regular lining fabrics is 13.3% only.

  • PDF

Fabrication of Stretchable Transparent Electrodes

  • Oh, Jong Sik;Yeom, Geun Young
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.149-156
    • /
    • 2017
  • Recently, stretchable and transparent electrodes have received great attention owing to their potential for realizing wearable electronics. Unlike the traditional transparent electrodes represented by indium tin oxide (ITO), stretchable and transparent electrodes are able to maintain their electrical and mechanical properties even under stretching stress. Lots of research efforts have been dedicated to the development of stretchable and transparent electrodes since they represent the most important engineering platform for the production of wearable electronics. Various approaches using silver nanowires, nanostructured networks, conductive polymers, and carbon-based electrodes have been explored by many world leading research groups. In this review, present and recent advances in the fabrication methods of stretchable and transparent electrodes are discussed.

Development of Stretchable Electronics Using Geometric Strategies and Applications

  • Seungkyu Lee;Kyusoon Pak;Jun Chang Yang;Steve Park
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.370-377
    • /
    • 2023
  • Soft and stretchable electronics, equipped with diverse functional devices, have recently garnered attention owing to their versatility in applications such as stretchable displays, flexible batteries, and electronic skin (e-skin). A fundamental challenge in realizing stretchable electronics lies in conferring the necessary flexibility to crucial electrical components such as electrodes and devices. However, the prevalent electronic materials, exhibit limited stretchability, presenting a significant obstacle to the advancement of soft and stretchable electronics. To overcome this challenge, various strategies rooted in geometrical engineering have been explored to enhance the adaptability of rigid materials. This study delves into the realm of geometrical engineering by, examining techniques such as serpentine patterns, kirigami-inspired designs, and island structures, with a keen focus on recent progress and future prospects.

PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 (Stretchable Deformation-Resistance Characteristics of the Stiffness-Gradient Stretchable Electronic Packages Based on PDMS)

  • 박대웅;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.47-53
    • /
    • 2019
  • Polydimethylsiloxane (PDMS)를 베이스 기판으로 사용하고 이보다 강성도가 높은 polytetrafluoroethylene(PTFE)를 island 기판으로 사용한 soft PDMS/hard PDMS/PTFE 구조의 강성도 경사형 신축 패키지를 형성하고, 이의 신축변형에 따른 저항특성을 분석하였다. PDMS/PTFE 기판패드에 50 ㎛ 직경의 칩 범프들을 anisotropic conductive paste를 사용하여 실장한 플립칩 접속부는 96 mΩ의 평균 접속저항을 나타내었다. Soft PDMS/hard PDMS/PTFE 구조의 신축 패키지를 30% 변형률로 인장시 PTFE의 변형률이 1%로 억제되었으며, PTFE 기판에 형성한 회로저항의 중가는 1%로 무시할 정도였다. 0~30% 범위의 신축변형 싸이클을 2,500회 반복시 회로저항이 1.7% 증가하였다.