Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.6.149

Fabrication of Stretchable Transparent Electrodes  

Oh, Jong Sik (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Yeom, Geun Young (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Applied Science and Convergence Technology / v.26, no.6, 2017 , pp. 149-156 More about this Journal
Abstract
Recently, stretchable and transparent electrodes have received great attention owing to their potential for realizing wearable electronics. Unlike the traditional transparent electrodes represented by indium tin oxide (ITO), stretchable and transparent electrodes are able to maintain their electrical and mechanical properties even under stretching stress. Lots of research efforts have been dedicated to the development of stretchable and transparent electrodes since they represent the most important engineering platform for the production of wearable electronics. Various approaches using silver nanowires, nanostructured networks, conductive polymers, and carbon-based electrodes have been explored by many world leading research groups. In this review, present and recent advances in the fabrication methods of stretchable and transparent electrodes are discussed.
Keywords
Transparent electrode; Stretchable electrode; Wearable;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Jang, W. B. Jung, C. Kim, P. Won, S. G. Lee, K. M. Cho, M. L. Jin, C. J. An, H. J. Jeon, S. H. Ko, T. S. Kim, and H. T. Jung, A three-dimensional metal grid mesh as a practical alternative to ITO. Nanoscale 2016, 8(29), 14257-14263.   DOI
2 T. Bocksrocker, N. Hulsmann, C. Eschenbaum, A. Pargner, S. Hofle, F. Maier-Flaig, and U. Lemmer, Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil. Thin Solid Films 2013, 542, 306-309.   DOI
3 J. S. Oh, J. S. Oh, J. H. Shin, G. Y. Yeom, and K. N. Kim, Nano-Welding of Ag Nanowires Using Rapid Thermal Annealing for Transparent Conductive Films. J Nanosci Nanotechno 2015, 15(11), 8647-8651.   DOI
4 H. T. Zhai, R. R. Wang, X. Wang, Y. Cheng, L. J. Shi, and J. Sun, Transparent heaters based on highly stable Cu nanowire films. Nano Res 2016, 9 (12), 3924-3936.   DOI
5 X. M. Xu, S. He, C. H. Zhou, X. D. Xia, L. Xu, H. Chen, B. C. Yang, and J. L. Yang, Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks. Rsc Adv 2016, 6(107), 105895-105902.   DOI
6 M. X. Song, X. He, C. Z. Zhang, M. D. Chen, C. J. Huang, F. H. Chen, and H. Qiu, Solvothermal fabrication of thin Ag nanowires assisted with AAO. Rsc Adv 2016, 6 (85), 82238-82243.   DOI
7 S. Pirsalami, S. M. Zebarjad, and H. Daneshmanesh, An Overview of Metallic Nanowire Networks, Promising Building Blocks for Next Generation Transparent Conductors: Emergence, Fundamentals and Challenges. J Electron Mater 2017, 46(8), 4707-4715.   DOI
8 J. T. Jiu and K. Suganuma, Metallic Nanowires and Their Application. Ieee T Comp Pack Man 2016, 6(12), 1733-1751.
9 Y. Huang, L. Gao, Y. N. Zhao, X. H. Guo, C. X. Liu, and P. Liu, Highly flexible fabric strain sensor based on graphene nanoplatelet-polyaniline nanocomposites for human gesture recognition. J Appl Polym Sci 2017, 134(39).
10 B. G. Zhuo, S. J. Chen, M. M. Zhao, and X. J. Guo, High Sensitivity Flexible Capacitive Pressure Sensor Using Polydimethylsiloxane Elastomer Dielectric Layer Micro-Structured by 3-D Printed Mold. Ieee J Electron Devi 2017, 5(3), 219-223.   DOI
11 X. G. Yu, Y. Q. Li, W. B. Zhu, P. Huang, T. T. Wang, N. Hu, and S. Y. Fu, A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection. Nanoscale 2017, 9(20), 6680-6685.   DOI
12 Y. C. Zhao and X. Huang, Mechanisms and Materials of Flexible and Stretchable Skin Sensors. Micromachines-Basel 2017, 8(3).
13 X. Q. Zhang, X. X. Huang, L. Xia, B. Zhong, X. D. Zhang, T. Zhang, and G. W. Wen, Facile synthesis of flexible and free-standing cotton covered by graphene/MoO2 for lithium-ions batteries. Ceram Int 2017, 43(6), 4753-4760.   DOI
14 P. Zhang, H. Z. Zhang, C. Yan, Z. J. Zheng, and Y. Yu, Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors. Mater Res Express 2017, 4(7).
15 B. You, Y. Kim, B. K. Ju, and J. W. Kim, Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable Transparent Electrode. Acs Appl Mater Inter 2017, 9(6), 5486-5494.   DOI
16 K. Kim, J. Kim, B. G. Hyun, S. Ji, S. Y. Kim, S. Kim, B. W. An, and J. U. Park, Stretchable and transparent electrodes based on inplane structures. Nanoscale 2015, 7(35), 14577-14594.   DOI
17 K. Kim, B. G. Hyun, J. Jang, E. Cho, Y. G. Park, and J. U. Park, Nanomaterial-based stretchable and transparent electrodes. J Inf Disp 2016, 17(4), 131-141.   DOI
18 T. Y. Choi, B. U. Hwang, B. Y. Kim, T. Q. Trung, Y. H. Nam, D. N. Kim, K. Eom, and N. E. Lee, Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes. Acs Appl Mater Inter 2017, 9(21), 18022-18030.   DOI
19 Y. Kim, S. Jun, B. K. Ju, and J. W. Kim, Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes. Acs Appl Mater Inter 2017, 9(8), 7505-7514.   DOI
20 D. H. Kim, K. C. Yu, Y. Kim, and J. W. Kim, Highly Stretchable and Mechanically Stable Transparent Electrode Based on Composite of Silver Nanowires and Polyurethane-Urea. Acs Appl Mater Inter 2015, 7(28), 15214-15222.   DOI
21 H. S. Liu, B. C. Pan, and G. S. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 2017, 9(7), 2633-2639.   DOI
22 C. Hwang, J. An, B. D. Choi, K. Kim, S. W. Jung, K. J. Baeg, M. G. Kim, K. M. Ok, and J. Hong, Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. J Mater Chem C 2016, 4(7), 1441-1447.   DOI
23 G. Heo, K. H. Pyo, D. H. Lee, Y. Kim, and J. W. Kim, Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer. Sci Rep-Uk 2016, 6.
24 C. F. Guo, Y. Chen, L. Tang, F. Wang, and Z. F. Ren, Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes. Nano Letters 2016, 16(1), 594-600.   DOI
25 H. Yabu, K. Nagamine, J. Kamei, Y. Saito, T. Okabe, T. Shimazaki, and M. Nishizawa, Stretchable, transparent and molecular permeable honeycomb electrodes and their hydrogel hybrids prepared by the breath figure method and sputtering of metals. Rsc Adv 2015, 5(107), 88414-88418.   DOI
26 T. Araki, R. Mandamparambil, D. M. P. van Bragt, J. Jiu, H. Koga, J. van den Brand, T. Sekitani, den J. M. J. Toonder, and K. Suganuma, Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques. Nanotechnology 2016, 27(45).
27 J. B. Pyo, B. S. Kim, H. Park, T. A. Kim, C. M. Koo, J. Lee, J. G. Son, S. S. Lee, and J. H. Park, Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes. Nanoscale 2015, 7(39), 16434-16441.   DOI
28 C. F. Guo, T. Y. Sun, Q. H. Liu, Z. G. Suo, and Z. F. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun 2014, 5.
29 T. Cheng, Y. Z. Zhang, W. Y. Lai, Y. Chen, W. J. Zeng, and W. Huang, High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. J Mater Chem C 2014, 2(48), 10369-10376.   DOI
30 W. L. Hu, X. F. Niu, L. Li, S. R. Yun, Z. B. Yu, amd Q. B. Pei, Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology 2012, 23(34).
31 H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes. Chem Mater 2013, 25 (17), 3535-3538.   DOI
32 Q. X. Fan, Q. Zhang, W. B. Zhou, F. Yang, N. Zhang, S. Q. Xiao, X. G. Gu, Z. J. Xiao, H. L. Chen, Y. C. Wang, H. P. Liu, and W. Y. Zhou, Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells. Chinese Phys B 2017, 26(2).
33 M. Y. Teo, N. Kim, S. Kee, B. S. Kim, G. Kim, S. Hong, S. Jung, and K. Lee, Highly Stretchable and Highly Conductive PEDOT:PSS/Ionic Liquid Composite Transparent Electrodes for Solution-Processed Stretchable Electronics. Acs Appl Mater Inter 2017, 9(1), 819-826.   DOI
34 J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanicallyrobust organic solar cells. Sol Energ Mat Sol C 2013, 110, 98-106.   DOI
35 R. J. Li, K. Parvez, F. Hinkel, X. L. Feng, and K. Mullen, va Bioinspired Wafer-Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angew Chem Int Edit 2013, 52(21), 5535-5538.   DOI
36 M. Vosgueritchian, D. J. Lipomi, and Z. A. Bao, Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Adv Funct Mater 2012, 22(2), 421-428.   DOI
37 Y. G. Seol, T. Q. Trung, O. J. Yoon, I. Y. Sohn, and N. E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J Mater Chem 2012, 22(45), 23759-23766.   DOI
38 J. H. Liu, Y. H. Yi, Y. H. Zhou, and H. F. Cai, Highly Stretchable and Flexible Graphene/ITO Hybrid Transparent Electrode. Nanoscale Res Lett 2016, 11.
39 J. Y. Hong, W. Kim, D. Cho, J. Kong, and H. S. Park, Omnidirectionally Stretchable and Transparent Graphene Electrodes. Acs Nano 2016, 10(10), 9446-9455.   DOI
40 S. Ahn, A. Choe, J. Park, H. Kim, J. G. Son, S. S. Lee, M. Park, and H. Ko, Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. J Mater Chem C 2015, 3(10), 2319-2325.   DOI
41 A. K. Geim and K. S. Novoselov, The rise of graphene. Nature materials 2007, 6(3), 183-191.   DOI
42 S. Won, Y. Hwangbo, S. K. Lee, K. S. Kim, K. S. Kim, S. M. Lee, H. J. Lee, J. H. Ahn, J. H. Kim, and S. B. Lee, Double-layer CVD graphene as stretchable transparent electrodes. Nanoscale 2014, 6(11), 6057-6064.   DOI
43 T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes. Acs Nano 2014, 8(1), 1039-1046.   DOI
44 B. W. An, B. G. Hyun, S. Y. Kim, M. Kim, M. S. Lee, K. Lee, J. B. Koo, H. Y. Chu, B. S. Bae, and J. U. Park, Stretchable and Transparent Electrodes using Hybrid Structures of Graphene-Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Letters 2014, 14(11), 6322-6328.   DOI
45 M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. Nam, and J. U. Park, High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures. Nano Letters 2013, 13(6), 2814-2821.   DOI
46 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669.   DOI
47 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8(3), 902-907.   DOI
48 X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 2008, 3(9), 538-542.   DOI
49 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors. Nano letters 2008, 8(10), 3498-3502.   DOI