Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.4.025

Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics  

Park, Jin Yeong (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology)
Lee, Won Jae (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology)
Nam, Hyun Jin (Dept. Of Manufacturing System and Design Engineering, Seoul National University of Science and Technology)
Choa, Sung-Hoon (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.4, 2018 , pp. 25-34 More about this Journal
Abstract
In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.
Keywords
Stretchable electronics; Interconnector; Strain sensor; Stretchable substrate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. L. Hu, R. R. Wang, Y. F. Lu, and Q. B. Pei, "An Elastomeric Transparent Composite Electrode Based on Copper Nanowires and Polyurethane", J. Mater. Chem. C., 2(7), 1298 (2014).   DOI
2 T. Q. Trung and N.-E Lee, "Materials and devices for transparent stretchable electronics", J. Mater. Chem. C., 5, 2202 (2017).   DOI
3 N. Lu and D.-H Kim, "Flexible and Stretchable Electronics Paving the Way for Soft Robotics", SOFT ROBOT, 1(1), 53 (2013).   DOI
4 Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin, and Y. Xie, "Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features", Sensors, 18(2), 645 (2018)   DOI
5 J. Nam, B. Seo, Y. Lee, D.-H. Kim, and S. Jo, "Cross-buckled structures for stretchable and compressible thin film silicon solar cells", Sci. Rep., 7, 7575 (2017).   DOI
6 S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, "Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics", Adv. Funct. Mater., 25(21), 3114 (2015).   DOI
7 N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, and T. Someya, "Printable elastic conductors with a high conductivity for electronic textile applications", Nat. Commun., 6, 7461 (2015).   DOI
8 Y. Wen, and J. Xu, "Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review", J. Polym. Sci. Part Polym. Chem., 55(7), 1121 (2017).   DOI
9 S. Kim, J. Lee, and B. Choi, "Stretching and twisting sensing with liquid-metal strain gauges printed on silicone elastomers", IEEE Sens. J., 15(11), 6077 (2015).   DOI
10 L. Li, S. Jiang, P. B. Shull, and G. Gu, "SkinGest: artificial skin for gesture recognition via filmy stretchable strain sensors", Adv. Robot., 32(21), 1112, (2018).   DOI
11 J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, "Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring", ACS Appl. Mater. Interfaces., 7(11), 6317 (2015).   DOI
12 S. Wu, S. Peng, Z. J. Han, H. Zhu, and C. H. Wang, "Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network", ACS Appl. Mater. Interfaces., 10(42), 36312 (2018).   DOI
13 J. Kim, S. W. Lee, M. H. Kim, and O. O. Park, "Zigzag-Shaped Silver Nanoplates: Synthesis via Ostwald Ripening and Their Application in Highly Sensitive Strain Sensors", ACS Appl. Mater. Interfaces., 10(45), 39134 (2018).   DOI
14 H. Y. Jang, S.-K. Lee, S. H. Cho, J.-H. Ahn, and S. Park, "Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes", Chem. Mater., 25(17), 3535 (2013).   DOI
15 Y. Sun, V. Kumar, I. Adesida, and J. A. Rogers, "Buckled andWavy Ribbons of GaAs for High-Performance Electronics on Elastomeric Substrates", Adv. Mater., 18(21), 2857 (2006).   DOI
16 P. Gutruf, S. Walia, M. N. Ali, S. Sriram, and M. Bhaskaran, "Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation", Appl. Phys. Lett., 104, 021908 (2014).   DOI
17 C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, "Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography", Nat. Commun., 5, 3121 (2014).   DOI
18 A. C. C. Sepulveda, M. S. D. Cordero, A. A. A. Carreno, J. M. Nassar, and M. M. Hussain, "Stretchable and foldable silicon-based electronics", Appl. Phys. Lett., 110(13), 134103 (2017).   DOI
19 W. Dang, V. Vinciguerra, L. Lorenzelli, and R. Dahiya, "Printable stretchable interconnects", Flex. Print. Electron., 2(1), 013003 (2013).
20 X. Wang, J. Li, H. Song, H. Huang, and J. Gou, "Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity", ACS Appl. Mater. Interfaces., 10(8), 7371 (2018).   DOI
21 J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, "Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring", ACS Appl. Mater. Interfaces., 7(11), 6317 (2015).   DOI
22 Y. Heo, Y. Hwang, H. S. Jung, S. H. Choa, and H. C. Ko, "Secondary Sensitivity Control of Silver-Nanowire-Based Resistive-Type Strain Sensors by Geometric Modulation of the Elastomer Substrate", Small, 13(23), 1700070 (2017).   DOI
23 D. Cho, J. Park, J. Kim, T. Kim, J. Kim, I. Park, and S. W. Jeon, "Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor", ACS Appl. Mater. Interfaces., 9(20), 17369 (2017).   DOI
24 M. S. Kim, D. Kwon, S. Kim, K. Kim, and I. Park, "Surface Micro-Structured Stretchable Strain Sensor toward Biaxial Sensitivity and Performance Enhancement", Proc. 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, 1044, IEEE (2017).
25 H.-B. Lee, C.-W. Bae, L. T. Duy, I.-Y. Sohn, D.-I. Kim, Y.-J. Song, Y.-J. Kim, and N.-E. Lee, "Mogul-Patterned Elastomeric Substrate for Stretchable Electronics", Adv. Mater., 28(16), 3069 (2016).   DOI
26 G. S. Jeong, D. H. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim, and S. H. Lee, "Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer", Nat. Commun., 3, 977 (2012).   DOI
27 S. A. Khan, M. Gao, Y. Zhu, Z. Yan, and Y. Lin, "MWCNTs based flexible and stretchable strain sensors", J. Semicond., 38(5), 053003 (2017).   DOI
28 Y. Hu, T. Zhao, P. Zhu, Y. Zhang, X. Liang, R. Sun, and C. Wong, "A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring", Nano Res., 11(4), 1938 (2018).   DOI
29 S. K. Hong, S. Yang, S. J. Cho, H. Jeon, and G. Lim, "Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding", Macromol. Mater. Eng., 18(4), 1700389 (2018).
30 M. Xu, J. Qi, F. Li, and Y. Zhang, "Highly Stretchable Strain Sensors with Reduced Graphene Oxide Sensing Liquids for Wearable Electronics", Nanoscale, 10, 5264 (2018).   DOI
31 H. Park, D. S. Kim, S. Y. Hong, C. Kim, J. Y. Yun, S. Y. Oh, S. W. Jin, Y. R. Jeong, G. T. Kim, and J. S. Ha, "A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays", Nanoscale, 9(22), 7631 (2017).   DOI
32 W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng, "Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites", J. Appl. Phys., 111(9), 93726 (2012).   DOI
33 Y. Yu, J. Zeng, C. Chen, Z. Xie, R. Guo, Z. Liu, X. Zhou, Y. Yang, and Z. Zheng, "Three-Dimensional Compressible and Stretchable Conductive Composites", Adv. Mater., 26(5), 810 (2014).   DOI
34 X. Wang, H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms", Adv. Mater., 23(27), 3090 (2011).   DOI
35 S. Kumar, J. Y. Murthy, and M. A. Alam, "Percolating conduction in finite nanotube networks", Phys. Rev. Lett., 95(6), 066802 (2005).   DOI
36 X. D. Wu, Y. Y. Han, X. X. Zhang, Z. H. Zhou, and C. H. Lu, "Large-Area Compliant, Low-Cost, and Versatile Pressure Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human-Machine Interfacing", Adv. Funct. Mater., 26(34), 6246 (2016).   DOI
37 Y. Zhang, C. J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y. Zhu, and Q. Jia, "Polymer-Embedded Carbon Nanotube Ribbons for Stretchable Conductors", Adv. Mater., 22(28), 3027 (2010).   DOI
38 C. Y. Yan, J. X. Wang, W. B. Kang, M. Q. Cui, X. Wang, C. Y. Foo, K. J. Chee, and P. S. Lee, "Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors", Adv. Mater., 26(13), 2017 (2014).
39 Y. Huang, Y. Zhao, Y. Wang, X. Guo, Y. Zhang, P. Liu, C. Liu, and Y. Zhang, "Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions", Smart Mater. Struct., 27(3), 035013 (2018).   DOI
40 X. Guo, Y. Huang, Y. Zhao, L. Mao, L. Gao, W. Pan, Y. Zhang, and P. Liu, "Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition", Smart Mater. Struct. 26(9), 095017 (2017).   DOI
41 W. Tang, T. Yan, J. Ping, J. Wu, and Y. Ying, "Rapid Fabrication of Flexible and Stretchable Strain Sensor by Chitosan-Based Water Ink for Plants Growth Monitoring", Adv. Mater. Technol., 2(7), 17000219 (2017).
42 H. Jeon, S. K. Hong, M. S. Kim, S. J. Cho, and G. Lim, "Omni-Purpose Stretchable Strain Sensor Based on a Highly Dense Nanocracking Structure for Whole-Body Motion Monitoring", ACS Appl. Mater. Interfaces,, 9(48), 41712 (2017).   DOI
43 Q. Zhang, L. Liu, D. Zhao, Q. Duan, J. Ji, A. Jian, W. Zhang, and S. Sang, "Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs", Nanomaterials, 7(12), 424 (2017).   DOI
44 I. Kim, K. Woo, Z. Zhong, P. Ko, Y. Jang, M. Jung, J. Jo, S. Kwon, S. H. Lee, S. Lee, H. Youn, and J. Moon, "A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring", Nanoscale, 10(17), 7890 (2018).   DOI
45 Q. Guo, Y. Luo, J. Liu, X. Zhang, and C. Lu, "A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface", J. Mater. Chem. C., 6(8), 2139 (2018).   DOI
46 A. Chortos, J. Liu, and Z. Bao, "Pursuing prosthetic electronic skin", Nat. Mater., 15, 937 (2016).   DOI
47 X. Shi, S. Liu, Y. Sun, J. Liang, and Y. Chen, "Lowering Internal Friction of 0D-1D-2D Ternary Nanocomposite-Based Strain Sensor by Fullerene to Boost the Sensing Performance", Adv. Funct. Mater., 28(22), 1800850 (2018).   DOI
48 M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, "Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite", ACS Nano, 8(5), 5154 (2014).   DOI
49 Y. He, S. Liao, H. Jia, Y. Cao, Z. Wang, and Y. Wang, "A Self-Healing Electronic Sensor Based on Thermal-Sensitive Fluids", Adv. Mater. 27(31), 4622 (2015).   DOI
50 D. Qi, Z. Liu, W. R. Leow, and X. Chen, "Elastic substrates for stretchable devices", MRS Bull., 42(2), 103 (2017).   DOI
51 T. K. Kim, J. K. Kim, and O. C. Jeong, "Measurement of nonlinear mechanical properties of PDMS elastomer", Microelectron. Eng., 88(8), 1982 (2011).   DOI
52 M. Irimia-Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, "Environmentally sustainable organic field effect transistors", Org. Electron., 11(12), 1974 (2010).   DOI
53 M. Shin, J. H. Song, G. H. Lim, B. Lim, J. J. Park, and U. Jeong, "Highly stretchable polymer transistors consisting entirely of stretchable device components", Adv. Mater., 26(22), 3706 (2014).   DOI
54 S. Lee, J.-Y. Kwon, D. Yoon, H. Cho, J. You, Y. T. Kang, D. Choi, and W. Hwang, "Bendability optimization of flexible optical nanoelectronics via neutral axis engineering", Nanoscale Res. Lett., 7, 256 (2012).   DOI
55 F. Long, X. D. Zhang, T. Bjorninen, and J. Virkki, "Implementation and wireless readout of passive UHF RFID strain sensor tags based on electro-textile antennas", Proc. 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2164, IEEE (2015).
56 A. Kalra, A. Lowe, A. M. Al-Jumaily, "Mechanical Behaviour of Skin: A Review", J. Mater. Sci. Eng., 5, 2169 (2016).
57 A. Hanif, T. Q. Trung, S. Siddiqui, P. T. Toi, and N. E. Lee, "Stretchable, Transparent, Tough, Ultrathin, and Self-limiting Skinlike Substrate for Stretchable Electronics", ACS Appl. Mater. Interfaces., 10(32), 27297 (2018).   DOI
58 T.-S. Han, D.-K Kim, O.-Y. Kwon, and S.-H. Choa, "Study of Standardization and Test Certification for Wearable Smart Devices", J. Microelectron. Packag. Soc., 23(4), 11 (2016).   DOI
59 H. A. Oh, D. Park, K. S. Han, and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 91 (2015).   DOI
60 J. A. Rogers, "Materials for semiconductor devices that can bend, fold, twist, and stretch", MRS Bull., 39(6), 549 (2014).   DOI
61 S. J. Benight, C. Wang, J. B. H. Tok, and Z. Bao, "Stretchable and self-healing polymers and devices for electronic skin", Prog. Polym. Sci., 38(12), 1961 (2013).   DOI