DOI QR코드

DOI QR Code

Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics

신축성 전자소자를 위한 신축성 전극 및 스트레인 센서 개발 동향

  • Park, Jin Yeong (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology) ;
  • Lee, Won Jae (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology) ;
  • Nam, Hyun Jin (Dept. Of Manufacturing System and Design Engineering, Seoul National University of Science and Technology) ;
  • Choa, Sung-Hoon (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology)
  • 박진영 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 이원재 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 남현진 (서울과학기술대학교 일반대학원) ;
  • 좌성훈 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2018.12.07
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.

Keywords

MOKRBW_2018_v25n4_25_f0001.png 이미지

Fig. 2. Picture of Fabric Stretch Sensor [Source: Stretch SenseTM, https://www.stretchsense.com].

MOKRBW_2018_v25n4_25_f0002.png 이미지

Fig. 3. Relative resistance change of Bend Sensor with decreasing bending radius.

MOKRBW_2018_v25n4_25_f0003.png 이미지

Fig. 1. (a) Geometric structures of the stretchable strain sensor. (b) Resistance change as a function of strain in AgNW-based strain sensors with various relief structures in the PDMS substrate.36)

Table 1. Summary of research results of recently reported stretchable strain sensors.

MOKRBW_2018_v25n4_25_t0001.png 이미지

References

  1. T.-S. Han, D.-K Kim, O.-Y. Kwon, and S.-H. Choa, "Study of Standardization and Test Certification for Wearable Smart Devices", J. Microelectron. Packag. Soc., 23(4), 11 (2016). https://doi.org/10.6117/kmeps.2016.23.4.011
  2. H. A. Oh, D. Park, K. S. Han, and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 91 (2015). https://doi.org/10.6117/kmeps.2015.22.4.091
  3. S. Lee, J.-Y. Kwon, D. Yoon, H. Cho, J. You, Y. T. Kang, D. Choi, and W. Hwang, "Bendability optimization of flexible optical nanoelectronics via neutral axis engineering", Nanoscale Res. Lett., 7, 256 (2012). https://doi.org/10.1186/1556-276X-7-256
  4. J. A. Rogers, "Materials for semiconductor devices that can bend, fold, twist, and stretch", MRS Bull., 39(6), 549 (2014). https://doi.org/10.1557/mrs.2014.102
  5. S. J. Benight, C. Wang, J. B. H. Tok, and Z. Bao, "Stretchable and self-healing polymers and devices for electronic skin", Prog. Polym. Sci., 38(12), 1961 (2013). https://doi.org/10.1016/j.progpolymsci.2013.08.001
  6. W. Dang, V. Vinciguerra, L. Lorenzelli, and R. Dahiya, "Printable stretchable interconnects", Flex. Print. Electron., 2(1), 013003 (2013).
  7. T. Q. Trung and N.-E Lee, "Materials and devices for transparent stretchable electronics", J. Mater. Chem. C., 5, 2202 (2017). https://doi.org/10.1039/C6TC05346G
  8. N. Lu and D.-H Kim, "Flexible and Stretchable Electronics Paving the Way for Soft Robotics", SOFT ROBOT, 1(1), 53 (2013). https://doi.org/10.1089/soro.2013.0005
  9. Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin, and Y. Xie, "Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features", Sensors, 18(2), 645 (2018) https://doi.org/10.3390/s18020645
  10. J. Nam, B. Seo, Y. Lee, D.-H. Kim, and S. Jo, "Cross-buckled structures for stretchable and compressible thin film silicon solar cells", Sci. Rep., 7, 7575 (2017). https://doi.org/10.1038/s41598-017-08012-y
  11. Y. Sun, V. Kumar, I. Adesida, and J. A. Rogers, "Buckled andWavy Ribbons of GaAs for High-Performance Electronics on Elastomeric Substrates", Adv. Mater., 18(21), 2857 (2006). https://doi.org/10.1002/adma.200600646
  12. P. Gutruf, S. Walia, M. N. Ali, S. Sriram, and M. Bhaskaran, "Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation", Appl. Phys. Lett., 104, 021908 (2014). https://doi.org/10.1063/1.4862264
  13. C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, "Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography", Nat. Commun., 5, 3121 (2014). https://doi.org/10.1038/ncomms4121
  14. H. Y. Jang, S.-K. Lee, S. H. Cho, J.-H. Ahn, and S. Park, "Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes", Chem. Mater., 25(17), 3535 (2013). https://doi.org/10.1021/cm402085k
  15. A. C. C. Sepulveda, M. S. D. Cordero, A. A. A. Carreno, J. M. Nassar, and M. M. Hussain, "Stretchable and foldable silicon-based electronics", Appl. Phys. Lett., 110(13), 134103 (2017). https://doi.org/10.1063/1.4979545
  16. H.-B. Lee, C.-W. Bae, L. T. Duy, I.-Y. Sohn, D.-I. Kim, Y.-J. Song, Y.-J. Kim, and N.-E. Lee, "Mogul-Patterned Elastomeric Substrate for Stretchable Electronics", Adv. Mater., 28(16), 3069 (2016). https://doi.org/10.1002/adma.201505218
  17. G. S. Jeong, D. H. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim, and S. H. Lee, "Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer", Nat. Commun., 3, 977 (2012). https://doi.org/10.1038/ncomms1980
  18. Y. Yu, J. Zeng, C. Chen, Z. Xie, R. Guo, Z. Liu, X. Zhou, Y. Yang, and Z. Zheng, "Three-Dimensional Compressible and Stretchable Conductive Composites", Adv. Mater., 26(5), 810 (2014). https://doi.org/10.1002/adma.201303662
  19. X. Wang, H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms", Adv. Mater., 23(27), 3090 (2011). https://doi.org/10.1002/adma.201101120
  20. S. Kumar, J. Y. Murthy, and M. A. Alam, "Percolating conduction in finite nanotube networks", Phys. Rev. Lett., 95(6), 066802 (2005). https://doi.org/10.1103/PhysRevLett.95.066802
  21. W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng, "Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites", J. Appl. Phys., 111(9), 93726 (2012). https://doi.org/10.1063/1.4716010
  22. X. D. Wu, Y. Y. Han, X. X. Zhang, Z. H. Zhou, and C. H. Lu, "Large-Area Compliant, Low-Cost, and Versatile Pressure Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human-Machine Interfacing", Adv. Funct. Mater., 26(34), 6246 (2016). https://doi.org/10.1002/adfm.201601995
  23. Y. Zhang, C. J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y. Zhu, and Q. Jia, "Polymer-Embedded Carbon Nanotube Ribbons for Stretchable Conductors", Adv. Mater., 22(28), 3027 (2010). https://doi.org/10.1002/adma.200904426
  24. C. Y. Yan, J. X. Wang, W. B. Kang, M. Q. Cui, X. Wang, C. Y. Foo, K. J. Chee, and P. S. Lee, "Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors", Adv. Mater., 26(13), 2017 (2014).
  25. W. L. Hu, R. R. Wang, Y. F. Lu, and Q. B. Pei, "An Elastomeric Transparent Composite Electrode Based on Copper Nanowires and Polyurethane", J. Mater. Chem. C., 2(7), 1298 (2014). https://doi.org/10.1039/C3TC31647E
  26. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, "Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics", Adv. Funct. Mater., 25(21), 3114 (2015). https://doi.org/10.1002/adfm.201500628
  27. N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, and T. Someya, "Printable elastic conductors with a high conductivity for electronic textile applications", Nat. Commun., 6, 7461 (2015). https://doi.org/10.1038/ncomms8461
  28. Y. Wen, and J. Xu, "Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review", J. Polym. Sci. Part Polym. Chem., 55(7), 1121 (2017). https://doi.org/10.1002/pola.28482
  29. S. Kim, J. Lee, and B. Choi, "Stretching and twisting sensing with liquid-metal strain gauges printed on silicone elastomers", IEEE Sens. J., 15(11), 6077 (2015). https://doi.org/10.1109/JSEN.2015.2462314
  30. L. Li, S. Jiang, P. B. Shull, and G. Gu, "SkinGest: artificial skin for gesture recognition via filmy stretchable strain sensors", Adv. Robot., 32(21), 1112, (2018). https://doi.org/10.1080/01691864.2018.1490666
  31. J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, "Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring", ACS Appl. Mater. Interfaces., 7(11), 6317 (2015). https://doi.org/10.1021/acsami.5b00695
  32. S. Wu, S. Peng, Z. J. Han, H. Zhu, and C. H. Wang, "Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network", ACS Appl. Mater. Interfaces., 10(42), 36312 (2018). https://doi.org/10.1021/acsami.8b15848
  33. J. Kim, S. W. Lee, M. H. Kim, and O. O. Park, "Zigzag-Shaped Silver Nanoplates: Synthesis via Ostwald Ripening and Their Application in Highly Sensitive Strain Sensors", ACS Appl. Mater. Interfaces., 10(45), 39134 (2018). https://doi.org/10.1021/acsami.8b11322
  34. X. Wang, J. Li, H. Song, H. Huang, and J. Gou, "Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity", ACS Appl. Mater. Interfaces., 10(8), 7371 (2018). https://doi.org/10.1021/acsami.7b17766
  35. J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, "Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring", ACS Appl. Mater. Interfaces., 7(11), 6317 (2015). https://doi.org/10.1021/acsami.5b00695
  36. Y. Heo, Y. Hwang, H. S. Jung, S. H. Choa, and H. C. Ko, "Secondary Sensitivity Control of Silver-Nanowire-Based Resistive-Type Strain Sensors by Geometric Modulation of the Elastomer Substrate", Small, 13(23), 1700070 (2017). https://doi.org/10.1002/smll.201700070
  37. D. Cho, J. Park, J. Kim, T. Kim, J. Kim, I. Park, and S. W. Jeon, "Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor", ACS Appl. Mater. Interfaces., 9(20), 17369 (2017). https://doi.org/10.1021/acsami.7b03052
  38. M. S. Kim, D. Kwon, S. Kim, K. Kim, and I. Park, "Surface Micro-Structured Stretchable Strain Sensor toward Biaxial Sensitivity and Performance Enhancement", Proc. 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, 1044, IEEE (2017).
  39. Y. Hu, T. Zhao, P. Zhu, Y. Zhang, X. Liang, R. Sun, and C. Wong, "A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring", Nano Res., 11(4), 1938 (2018). https://doi.org/10.1007/s12274-017-1811-0
  40. S. K. Hong, S. Yang, S. J. Cho, H. Jeon, and G. Lim, "Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding", Macromol. Mater. Eng., 18(4), 1700389 (2018).
  41. M. Xu, J. Qi, F. Li, and Y. Zhang, "Highly Stretchable Strain Sensors with Reduced Graphene Oxide Sensing Liquids for Wearable Electronics", Nanoscale, 10, 5264 (2018). https://doi.org/10.1039/C7NR09022F
  42. S. A. Khan, M. Gao, Y. Zhu, Z. Yan, and Y. Lin, "MWCNTs based flexible and stretchable strain sensors", J. Semicond., 38(5), 053003 (2017). https://doi.org/10.1088/1674-4926/38/5/053003
  43. H. Park, D. S. Kim, S. Y. Hong, C. Kim, J. Y. Yun, S. Y. Oh, S. W. Jin, Y. R. Jeong, G. T. Kim, and J. S. Ha, "A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays", Nanoscale, 9(22), 7631 (2017). https://doi.org/10.1039/C7NR02147J
  44. X. Guo, Y. Huang, Y. Zhao, L. Mao, L. Gao, W. Pan, Y. Zhang, and P. Liu, "Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition", Smart Mater. Struct. 26(9), 095017 (2017). https://doi.org/10.1088/1361-665X/aa79c3
  45. Y. Huang, Y. Zhao, Y. Wang, X. Guo, Y. Zhang, P. Liu, C. Liu, and Y. Zhang, "Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions", Smart Mater. Struct., 27(3), 035013 (2018). https://doi.org/10.1088/1361-665X/aaaba0
  46. W. Tang, T. Yan, J. Ping, J. Wu, and Y. Ying, "Rapid Fabrication of Flexible and Stretchable Strain Sensor by Chitosan-Based Water Ink for Plants Growth Monitoring", Adv. Mater. Technol., 2(7), 17000219 (2017).
  47. H. Jeon, S. K. Hong, M. S. Kim, S. J. Cho, and G. Lim, "Omni-Purpose Stretchable Strain Sensor Based on a Highly Dense Nanocracking Structure for Whole-Body Motion Monitoring", ACS Appl. Mater. Interfaces,, 9(48), 41712 (2017). https://doi.org/10.1021/acsami.7b14153
  48. Q. Zhang, L. Liu, D. Zhao, Q. Duan, J. Ji, A. Jian, W. Zhang, and S. Sang, "Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs", Nanomaterials, 7(12), 424 (2017). https://doi.org/10.3390/nano7120424
  49. I. Kim, K. Woo, Z. Zhong, P. Ko, Y. Jang, M. Jung, J. Jo, S. Kwon, S. H. Lee, S. Lee, H. Youn, and J. Moon, "A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring", Nanoscale, 10(17), 7890 (2018). https://doi.org/10.1039/C7NR09421C
  50. Q. Guo, Y. Luo, J. Liu, X. Zhang, and C. Lu, "A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface", J. Mater. Chem. C., 6(8), 2139 (2018). https://doi.org/10.1039/C7TC05758J
  51. X. Shi, S. Liu, Y. Sun, J. Liang, and Y. Chen, "Lowering Internal Friction of 0D-1D-2D Ternary Nanocomposite-Based Strain Sensor by Fullerene to Boost the Sensing Performance", Adv. Funct. Mater., 28(22), 1800850 (2018). https://doi.org/10.1002/adfm.201800850
  52. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, "Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite", ACS Nano, 8(5), 5154 (2014). https://doi.org/10.1021/nn501204t
  53. Y. He, S. Liao, H. Jia, Y. Cao, Z. Wang, and Y. Wang, "A Self-Healing Electronic Sensor Based on Thermal-Sensitive Fluids", Adv. Mater. 27(31), 4622 (2015). https://doi.org/10.1002/adma.201501436
  54. A. Chortos, J. Liu, and Z. Bao, "Pursuing prosthetic electronic skin", Nat. Mater., 15, 937 (2016). https://doi.org/10.1038/nmat4671
  55. D. Qi, Z. Liu, W. R. Leow, and X. Chen, "Elastic substrates for stretchable devices", MRS Bull., 42(2), 103 (2017). https://doi.org/10.1557/mrs.2017.7
  56. T. K. Kim, J. K. Kim, and O. C. Jeong, "Measurement of nonlinear mechanical properties of PDMS elastomer", Microelectron. Eng., 88(8), 1982 (2011). https://doi.org/10.1016/j.mee.2010.12.108
  57. M. Irimia-Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, "Environmentally sustainable organic field effect transistors", Org. Electron., 11(12), 1974 (2010). https://doi.org/10.1016/j.orgel.2010.09.007
  58. M. Shin, J. H. Song, G. H. Lim, B. Lim, J. J. Park, and U. Jeong, "Highly stretchable polymer transistors consisting entirely of stretchable device components", Adv. Mater., 26(22), 3706 (2014). https://doi.org/10.1002/adma.201400009
  59. F. Long, X. D. Zhang, T. Bjorninen, and J. Virkki, "Implementation and wireless readout of passive UHF RFID strain sensor tags based on electro-textile antennas", Proc. 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2164, IEEE (2015).
  60. A. Kalra, A. Lowe, A. M. Al-Jumaily, "Mechanical Behaviour of Skin: A Review", J. Mater. Sci. Eng., 5, 2169 (2016).
  61. A. Hanif, T. Q. Trung, S. Siddiqui, P. T. Toi, and N. E. Lee, "Stretchable, Transparent, Tough, Ultrathin, and Self-limiting Skinlike Substrate for Stretchable Electronics", ACS Appl. Mater. Interfaces., 10(32), 27297 (2018). https://doi.org/10.1021/acsami.8b08283