• Title/Summary/Keyword: stress singularity factor

Search Result 64, Processing Time 0.025 seconds

Analysis of Arbitrary Three Dimensional Cracks in the Finite Body Using the Symmetric Galerkin Boundary Element Method (대칭 Galerkin 경계요소법을 이용한 유한체 내에 존재하는 임의의 삼차원 균열의 해석)

  • Park, Jai-Hak;Kim, Tae-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • Many analysis methods, including finite element method, have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrary three dimensional cracks, the finite element alternating method is extended. The crack is modeled by the symmetric Galerkin boundary element method as a distribution of displacement discontinuities, which is formulated as singularity-reduced integral equations. And the finite element method is used to calculate the stress values for the uncracked body only. Applied the proposed method to several example problems for planner cracks in finite bodies, the accuracy and efficiency of the method were demonstrated.

A Study on the Determination and Characteristics of Stress Intensity Factors and Stress Singularities for V-notched Cracks in Dissimilar Materials (이종재료간 V-노치균열의 응력특이성과 응력강도계수의 특성 및 결정에 관한 연구)

  • 조상봉;윤성관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1890-1899
    • /
    • 1992
  • In bonded structures, there are V-notched cracks in dissimilar materials and the stress concentration of these V-notched cracks causes to occur interface cracks in dissimilar materials Therefore the strength evaluation of V-notched cracks in dissimliar materials seems to be important. The stress fields of a V-notched cracks is known as .sigma.$_{ij}$ .var. K $r_{p-1}$,where K is the stress intensity factor and p-1 is the stress singularity. When the distance, r, approaches to 0 at the stress fields of V-notched cracks, the stresses become infinites by two more stress singularities of p-1 and p-1 is no more -0.5. Stress singularities and stress intensity factors for V-notched cracks in dissimilar materials are treated and discussed. The Newton-Raphson method which is an efficient numerical method for solving a non-linear equation is used for solving stress sigularities. And stress intensity factors are solved by the collocation method using the Newton-Raphson and least squares method. The effects of stress intensity factors and stress singularities on stress fields of V-notched cracks in dissimilar materials are studied by using photoelasic isochromatic frings patterns obtained from computer graphics.s.

Analysis of cracks emanating from a circular hole in an orthotropic infinite plate (直交 異方性 無限平版 內部의 圓孔周圍 龜裂 解析)

  • 정성균;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.895-903
    • /
    • 1987
  • This paper investigates the problem of cracks emanating from a circular hole in an orthotropic infinite plate. The mixed-mode stress intensity factors are obtained by using the modified mapping-collocation method. To investigate the effect of anisotropy and circular hole boundary on crack tip singularity, stress intensity factors are considered as functions of the normalized crack length for various types of laminated composite. The results indicate a strong dependence of the stress intensity factor on the material anisotropy and geometry.

해수환경에서 강 용접부의 환경강도평가에 관한 연구 1

  • 정세희;김태영;나의균
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.56-63
    • /
    • 1988
  • The effects of PWHT (poste weld heat treatment) and stress simulating the residual stress during PWHT in weld HAZ of low and high strength steels on corrosion fatigue crack growth were evaluated. The obtained results are summarized as follows. 1. Fatigue crack growth rate of HAZ in air and 3.5% NaCl solution was slower than that of parent due to the signgularity in weld HAZ. 2. In the case of HT-80, 3.5% NaCl solutio nacts to accelerate the crack growth for all specimens, and the sensitivity of as-weld to corrosion environment was the greatest among other PWHT specimens. 3. Corrosion fatigue crack growth of parent, as-weld and PWHT speciments ofr SS41 as well as SM53B was retarded in comparison with the fatigue crack growth in air. 4. There was a tendency that crack growth of PWHT specimens subjected $10kg/mm^2$ was faster than that of PWHT specimens without stress during PWHT. 5. The retardation phenomenon of crack growth in corrosion environment is attributed to the crack branching decreased .DELTA.K due to the corrosion products and multi-cracks.

  • PDF

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

Development of finite 'crack' element (균열 유한 요소의 개발)

  • 조영삼;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.381-388
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor K/sub I/ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

Analysis of Three Dimensional Cracks Subjected to the Mode I Loading by Using FEAM (유한요소 교호법을 이용한 모드 I 하중 하의 삼차원 균열의 해석)

  • Kim, Tae-Sun;Park, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.982-990
    • /
    • 2000
  • The finite element alternating method is extended further for general three dimensional cracks in an isotropic body subjected to the mode I loading. The required analytical solution for a dime dimensional crack in an infinite isotropic body is obtained by solving the integral equations. In order to remove the high singularity in integration, the technique suggested by Keat et al. was used. With the proposed method several example problems are solved in order to check the accuracy and efficiency of the method.

HIGHER ORDER SINGULARITIES AND THEIR ENERGETICS IN ELASTIC-PLASTIC FRACTURE (탄소성 균열 문제에서 고차응력특이성과 에너지론)

  • Jun, In-Su;Lee, Yong-Woo;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.384-388
    • /
    • 2001
  • The higher order singularities[1] are systematically examined, and discussed are their complementarity relation with the nonsingular eigenfunctions and their relations to the configurational forces like J-integral and M-integral. By use of the so-called two state conservation laws(Im and Kim[2]) or interaction energy, originally proposed by Eshelby[3] and later treated by Chen and Shield[4], the intensities of the higher order singularities are calculated, and their roles in elasticplastic fracture are investigated. Numerical examples are presented for illustration.

  • PDF

Finite 'crack' element method (균열 유한 요소법)

  • Cho, Young-Sam;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.551-556
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor $K_I$ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

Mixed Mode Crack Propagation Models of the Concrete Beams (콘크리트 보에서의 혼합모드 균열전파에 관한 연구)

  • 이상석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.256-266
    • /
    • 1999
  • The angled crack which is the simplest and representative case in the mixed mode crack analysis has stimulated the interests of many investigators during past 20 years. In this study the conventional quadratic isoparametric elements were used in all regions except the crack tip zone where triangular singularity elements with 6 nodes were used. The stress intensity factor of K1 and KII were determined respectively by the displacement correlation method. The finite element analysis program in this paper based on maximum energy release rate criteria and the results obtaiend by this program were compared with those calculated from the maximum circumferential tensile criteria and those by Jenq and Shah's experiments of the same geometry and material properties

  • PDF