• Title/Summary/Keyword: strength disaster

Search Result 395, Processing Time 0.021 seconds

Cooperative bearing behaviors of roadside support and surrounding rocks along gob-side

  • Tan, Yunliang;Ma, Qing;Zhao, Zenghui;Gu, Qingheng;Fan, Deyuan;Song, Shilin;Huang, Dongmei
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-448
    • /
    • 2019
  • The bearing capacity of roadside support is the key problem in gob-side entry retaining technology. To study the cooperative bearing characteristics of the roof-roadside support-floor along the gob-side entry retaining, a mechanical model of the composite structure of the roof-roadside support-floor was first established. A method for determining the structural parameters of gob-side entry retaining was then proposed. Based on this model, adaptability analysis of roadside support was carried out. The results showed that the reasonable width of the gob-side entry roadway was inversely proportional to the mining height, and directly proportional to the bearing strength of the roof and floor. And the reasonable width of the "flexible-hard" roadside support was directly proportional to its own strength, and inversely proportional to the width of the gob-side entry retaining. When determining the position and size of the roadside support along the gob-side entry retaining, the surrounding rock environment should be fully considered. Measured results from case study also show the rationality of the model and calculation method.

Research on the support system and reinforcement range of cross passage tunnel (피난연결통로터널의 지보패턴 및 보강범위 연구)

  • Jung, Min;Han, Ki-Hwan;Park, Jin-Won;Baek, Kyung-Min;Moon, Hoon-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2010
  • Recently, plans of tunnel and construction have increased. Unfortunately, the more we have tunnels, the more we have accidents in there. Because an accident or a fire in the tunnel is fatal to user safety, social concerns are focusing on the disaster prevention facilities. Cross passage tunnel is regarded as one of the useful disaster prevention facilities, which is increasing, while there were only few studies about the support system. This study tried to verify whether the support system is appropriate or not with empirical methods-theoretical methods and back analysis using measurement data. Additionally, we also looked into the range of reinforcement in accordance with strength/stress ratio of rock mass.

An Experimental Study on the Engineering Characteristics Analysis of Unsaturated Weathered Granite Soil (불포화된 화강풍화토에 대한 공학적 특성분석을 위한 실험적 연구)

  • Kim, Joon-Seok
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.577-585
    • /
    • 2020
  • Purpose: The presence of the matric suction in unsaturated soil increases the stability of the slope, but the reduction of the matric suction due to precipitation can cause sudden slope failure, resulting in a major disaster. In this paper, engineering characteristics in unsaturated state were analyzed for granite weathering soil, which is the representative mountain soil of Korea. Method: Experiments and analysis were conducted on granulated weathering soil as unsaturated shear strength relationships for moisture characteristic curves, unsaturated injection curves, and matric suction under unsaturated conditions. Result: It was analyzed that a rapid change in the matric suction for volumetric water content occurs compared to the case where the particle size distribution is poor and the particle size distribution is good. A good case for the particle size distribution indicates a relatively small permeability coefficient at the same matric suction capacity compared to a poor case. The greater thematric suction, the greater the shear strength. Conclusion: For Korea's representative soil, granulated weathering soil, the functional characteristic curves, unsaturated permeability coefficients, unsaturated shear strength, etc., which are engineering characteristics in unsaturated state, were tested to secure each correlation.

Evaluation on In-plane Shear Strength of Lightweight Composite Panels (경량 복합패널의 면내 전단 성능 평가)

  • Hwang, Moon-Young;Kang, Su-Min;Lee, Byung-yun;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The number of natural disasters in Korea, such as earthquakes, is increasing. As a result, there is growing need for temporary residences or shelters for disaster conditions. The aim of this study was to produce post-disaster refugees housing differentiated from existing shelters using lightweight composite panels. To accomplish this, the structural performance of lightweight composite panels was validated, and an in-plane shear strength test was conducted according to the ASTM E72 criteria among the performance test methods for panels. As a result of the experiment, the maximum load for each specimen under an in-plane shear load was determined. All the experiments ended with the tear of the panel's skin section. The initial stiffness of the specimens was consistent with that predicted by the calculations. On the other hand, local crushing and tearing, as well as the characteristics of the panel, resulted in a decrease in stiffness and final failure. Specimens with an opening showed a difference in stiffness and strength from the basic experiment. The maximum load and the effective area were found to be proportional. Through this process, the allowable shear stress of the specimens was calculated and the average allowable shear stress was determined. The average ultimate shear stress of the lightweight composite panels was found to be $0.047N/mm^2$, which provides a criterion of judgement that could be used to expect the allowable load of lightweight composite panels.

Permanent Formwork of PLA Filament utilizing 3D Printing Technology (3D 프린팅 기술을 활용한 PLA 필라멘트 비탈형 거푸집 연구)

  • Jeong, Junhyeong;Hyun, Jihun;Jeong, Heesang;Go, Huijae;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2021
  • In recent years, the design of buildings is changing from formal to creative and freeform. Accordingly, the scale of construction technology is changing to architectural design and construction of irregular buildings. Using the FDM method, which is one of the 3D printing technologies, it is possible to manufacture various forms of irregular formwork inexpensively and quickly coMPared to the existing formwork, and it seems to be able to solve the manpower problem. Using a 3D printer, the PLA filament formwork is produced in the form of a cylinder and a rectangular cuboid, and the usability of the PLA filament formwork is confirmed by examining the compression strength test and the degree of deformation and reusability over 28 days of age. Different sizes of additional specimens are also conducted according to the size. As a result of the experiment, it was confirmed that the filament formwork itself has about 3~4MPa strength. As a result of reviewing data through existing linear studies and experiments, it is appropriate to use more than 60% infill, and it is advantageous in terms of strength. As a result of cutting and dismantling the filament formwork, the surface is very clean and there is no damage, so it can be reused.

Estimation of Road-Network Performance and Resilience According to the Strength of a Disaster (재난 강도에 따른 도로 네트워크의 성능 및 회복력 산정 방안)

  • Jung, Hoyong;Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • PURPOSES : This study examines the performance changes of road networks according to the strength of a disaster, and proposes a method for estimating the quantitative resilience according to the road-network performance changes and damage scale. This study also selected high-influence road sections, according to disasters targeting the road network, and aimed to analyze their hazard resilience from the network aspect through a scenario analysis of the damage recovery after a disaster occurred. METHODS : The analysis was conducted targeting Sejong City in South Korea. The disaster situation was set up using the TransCAD and VISSIM traffic-simulation software. First, the study analyzed how road-network damage changed the user's travel pattern and travel time, and how it affected the complete network. Secondly, the functional aspects of the road networks were analyzed using quantitative resilience. Finally, based on the road-network performance change and resilience, priority-management road sections were selected. RESULTS : According to the analysis results, when a road section has relatively low connectivity and low traffic, its effect on the complete network is insignificant. Moreover, certain road sections with relatively high importance can suffer a performance loss from major damage, for e.g., sections where bridges, tunnels, or underground roads are located, roads where no bypasses exist or they exist far from the concerned road, including entrances and exits to suburban areas. Relatively important roads have the potential to significantly degrade the network performance when a disaster occurs. Because of the high risk of delays or isolation, they may lead to secondary damage. Thus, it is necessary to manage the roads to maintain their performance. CONCLUSIONS : As a baseline study to establish measures for traffic prevention, this study considered the performance of a road network, selected high-influence road sections within the road network, and analyzed the quantitative resilience of the road network according to scenarios. The road users' passage-pattern changes were analyzed through simulation analysis using the User Equilibrium model. Based on the analysis results, the resilience in each scenario was examined and compared. Sections where a road's performance loss had a significant influence on the network were targeted. The study results were judged to become basic research data for establishing response plans to restore the original functions and performance of the destroyed and damage road networks, and for selecting maintenance priorities.

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

Fundamental Study of Mix Proportions of High-Flow Cement-Based Mortar for Gravel-Fill Used in Restoration of Collapsed Roads (도로유실 복구를 위한 골재 충전 고흐름도 모르타르의 기초 배합 연구)

  • Cho, Hyun Myung;Jeon, Sang Pyo;Kim, Seung Won;Yun, Kyong Ku;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-70
    • /
    • 2015
  • PURPOSES: As a part of our research into repair techniques for roads that have collapsed as a result of a natural disaster, this study set out to find the optimum mix proportion for gravels to be used to restore a damaged area. METHODS: This study considered flow and strength-development characteristics. The experimental variables were the W/C ratio, the usage of the admixture, the types of cement, and the quantity of fine aggregate over three different experimental stages. The compressive strength was measured at 12 hours, one day, three days, and seven days. RESULTS : The flow varied with the amount of fine aggregate and the use of a high-range water-reducing (HRWR) admixture. The compressive strength also varied with respect to the type of cement and the W/C ratios. The strength satisfied the expected requirement of 21 MPa after one day, provided the mix proportion was appropriate. CONCLUSIONS: A gravel-filling high-flow cement-based mortar exhibited strength and consistency with a W/C ratio in the range of 0.40 to 0.45, assuming the use of HRWR at 0.5 to 0.7% and a fine aggregate/cement ratio of 1.0 to 1.5.

Changes of Material Properties of Pre-heated Tuff Specimens (예열처리된 응회암 시험편의 물성 변화)

  • Yoon, Yong-Kyun;Kim, Sa-Hyun
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • Tuff specimens were thermally treated with predetermined temperatures of 200, 400 and $600^{\circ}C$ to construct specimens simulating weathered tuff rocks. Specific gravity, absorption ratio, elastic wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio and slake-durability index were measured for pre-heated specimens. Heating of rock specimens entailed the degradation of material properties except for slake-durability index. It was found that correlations among P-wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio are high. Regression equations which use the P-wave velocity as an independent variable were presented to evaluate uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio.