• Title/Summary/Keyword: strength, surface roughness

Search Result 535, Processing Time 0.031 seconds

Effect of Surface Modification Process Conditions on Properties of Aramid Paper (아라미드 종이의 특성에 대한 표면 개질 과정 조건의 영향)

  • Sha, Lizheng;Zhao, Huifang
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.196-203
    • /
    • 2013
  • Surface modification of meta-aramid fibers was performed by phosphoric acid treatment. Surface morphology and element composition of untreated and treated fibers were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Effects of surface modification on the mechanical strength of aramid papers made from meta-aramid fibers and fibrid were investigated. Surface modification conditions were optimized by response surface analysis (RSA). Results show that phosphoric acid treatment increases the surface roughness and oxygen content of aramid fibers. They improve the interface bonding strength between aramid fibers and fibrid, which improves the tensile strength of aramid papers. The results of response surface analysis indicate that the tensile strength of aramid papers increases by 47.5% and reaches the maximum when meta-aramid fibers are treated with 21.1wt% phosphoric acid solution at $39.3^{\circ}C$ for 36.7 min.

Evaluation of Fracture Strength of Silicon Die with Surface Condition by Ball Breaker Test (볼브레이커시험에 의한 실리콘 다이의 표면조건에 따른 파단강도 평가)

  • Byeon, Jai-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.178-184
    • /
    • 2013
  • The effects of thickness and surface grinding condition on the fracture strength of Si wafer with a thickness under $100{\mu}m$ were investigated. Fracture strength was measured by ball breaker test for about 330 dies (size: $4mm{\times}4mm$) per each wafer. For statistical analysis of the fracture strength, scale factor was determined from Weibull plot. Ball breaker fracture strength was observed to increase with decreasing thickness of silicon die. For the silicon dies of different surface conditions, ball breaker fracture strength was high in the order of polished, ground (#4800), and ground (#320 grit) specimen. Probabilistic fracture strength (i.e., scale factor) increased with decreasing surface roughness of silicon die.

The Effect of Compressive Residual Stresses of Two-stage Shot Peening for Fatigue Strength of Spring Steel

  • Park, Keyoung Dong;Jung, Chang Gi;Kwon, Oh Heon
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Recently the steel parts used in automobiles are required to be used under high stress more than ever before due to the need of keeping the weight down. To achieve this requirement of the high strength steel, it must be necessary to decrease inclusion contents and surface defects as like decarburization, surface roughness etc. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel (JISG408l-SUP7, SAE 9254 and DIN 50CrV4) are shaped. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotating bending fatigue test and it results from (1) decreasing the surface roughness (2) unchanging the surface hardness (3) increasing the compressive residual stress. Moreover, results also show fatigue failures originated at the inclusion near the surface, and this inclusion type is turned out to be an alumina of high hardness.

The effect of compressive residual stresses of two-stage shot peening for fatigue strength of spring steel (스프링강의 피로강도에 미치는 2단 쇼트 피이닝에 의한 압축잔류응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.71-79
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel(JISG4081-SUP ,SAE 9254, DIN 50CrV4, ) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) Decreasing the surface roughness (2) Unchanging the surface hardness (3) Increasing the compressive residual stress But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Effect of Coating Time on the Property of TiN-Coated Layer of High Speed Steel by Arc Ion Plating (AIP 코팅법에서 코팅 시간이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, H.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.366-372
    • /
    • 2006
  • The effect of coating time in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. Surface roughness, micro-hardness, coated thickness, atomic distribution of TiN and adhesion strength are measured for various coating times. It has been shown that the coating time has a deep influence on the micro-hardness, the coated thickness, the atomic distribution of Ti and the adhesion strength of the SKH51 steels but that it has little influence on the surface roughness.

Effect of Coating Time on the Property of TiN-Coated Layer on High Speed Steel by Arc Ion Plating (AIP 코팅법에서 코팅 시간이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, B.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.308-313
    • /
    • 2006
  • The effect of coating time on surface properties of the TiN-coated high speed steel(SKH51) by arc ion plating is and presented in this paper. Surface roughness, micro-hardness, coated thickness, atomic distribution of TiN and adhesion strength are measured for various coating times. It has been shown that the coating time has a deep influence more than 60 minites on the micro-hardness, coated thickness, atomic distribution of Ti and adhesion strength of the SKH51 steels, but that the coating time has little influence on the surface roughness.

  • PDF

Effect of Deposition Time on the Properties of TiN-coated Layer of SM45C Steel by Arc Ion Plating (AIP법에서 증착시간이 SM45C 강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.44-50
    • /
    • 2011
  • The effect of deposition time in arc ion plating on surface properties of the TiN-coated SM45C steel is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured for various deposition times. It has been shown that the deposition time has a considerable effect on the micro-hardness, the coated thickness, and the atomic distribution of TiN of the SM45C steels but that it has little influence on the surface roughness and adhesion strength.

Surface polishing of Micro channel using Magneto-Rheological fluid (MR유체를 이용한 미세 채널구조물의 표면연마)

  • 이승환;김욱배;민병권;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1873-1876
    • /
    • 2003
  • Magneto-rheological polishing is a new technology used in precision polishing. It utilizes magneto-rheological fluid. nonmagnetic polishing abrasive, aqueous carrier fluids in magnetic field to remove material from a part surface. Silicon micro channel as work piece is fixed in the slurry which is made of MR fluid and CeO$_2$(10 vol%) abrasive particles. And permanent magnet rotate in the slurry to transfers magnetic force to abrasive particles by increasing yield strength of MR fluid. so, the obtained bottom surface roughness of micro channel by experiment reduced to Ra 0.010 $\mu\textrm{m}$ Rmax 0.103 $\mu\textrm{m}$ and finwall surface roughness of micro channel reduced to Ra 0.018 $\mu\textrm{m}$ Rmax 0.468 $\mu\textrm{m}$. At optimum conditions of variables, the workpiece as silicon micro channel have about 24 times smaller surface roughness than before polishing.

  • PDF

Enhancement of Paper Characteristics by Polyvinyl Alcohol/Polyamide-epichlorohydrin Coating as a Complex Strength Additive (Polyvinyl Alcohol/Polyamide-epichlorohydrin 복합 지력증강제에 의한 종이 특성 향상)

  • Jang, Yunjae;Lee, Hwaljong;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.620-625
    • /
    • 2014
  • The effect of polyvinyl alcohol/polyamide-epichlorohydrin (PVA/PAE) complex strengthening additive on dry and wet strength and surface properties of paper was investigated. The enhancements of dry and wet strength and dimensional stability were found when PVA/PAE was applied as a complex strengthening additive compared with the cases of applying individual PVA or PAE. This was understood as physical crosslinking between PVA and PAE in the PVA/PAE complex strength additive. This complex strengthening additive also lowered surface roughness and increased sizing. As a result, PVA/PAE complex strengthening additive provided the distinctive gain dot in printed papers.

Impact of multiple firings and resin cement type on shear bond strength between zirconia and resin cements

  • Oguz, Ece Irem;Ozgur, Merve Erdog;Sungur, Sercan;Uctasli, Sadullah
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.197-203
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the effect of multiple firings on the bond strength between yttriatetragonal zirconia polycrystals (Y-TZP) and 2 types of resin cements. MATERIALS AND METHODS. Sixty 3Y-TZP specimens (LAVA Frame Multi) were divided into 3 groups depending on the following firing procedures: (1) 2-firing cycles, (2) 5-firing cycles, (3) 10-firing cycles. Two samples from each group were investigated by using SEM to determine the morphological changes. All specimens were treated with 125 ㎛ airborne-particle abrasion and the surface roughness of each specimen was measured. The specimens from each firing group were then further divided into 2 subgroups (n = 9) to apply 2 types of resin cement (MDP-free resin cement: RelyX Unicem-RU, and MDP containing resin cement: Panavia F 2.0-PA). The shear bond strength (SBS) test was performed and failure types of all the debonded specimens were classified by using a stereomicroscope as adhesive, cohesive, and mixed. The statistical analysis of surface roughness and SBS data were performed by using 1-way ANOVA and 2-way ANOVA followed by Tukey-HSD tests (α=.05). Failure modes were calculated as a percentage for each group. RESULTS. The bond strength of RU and PA to the specimens obtained with 2 firings were not statistically different from each other (P=.1). However, the SBS values of PA were found to be significantly higher than RU for the specimens obtained with 5 and 10 firing cycles (P=.001 and P=.02, respectively). Surface roughness analysis revealed no statistical difference between groups (P=.2). The SEM analysis of samples fired 5- and 10- times showed irregularities and boundary loss in zirconia grains, and empty spaces between zirconia grains. CONCLUSION. The bond strength of PA cement was higher than that of RU to the zirconia subjected to repeated firings (5 and 10 firing cycles). When zirconia is subjected to multiple firings, using MDP-containing resin cement can be recommended.