• Title/Summary/Keyword: strain sensing

Search Result 280, Processing Time 0.029 seconds

Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166

  • Ryu, Choong-Min;Choi, Hye Kyung;Lee, Chi-Ho;Murphy, John F.;Lee, Jung-Kee;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.182-192
    • /
    • 2013
  • Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.

Positive Regulation of Pyoluteorin Biosynthesis in Pseudomonas sp. M18 by Quorum-Sensing Regulator VqsR

  • Huang, Xianqing;Zhang, Xuehong;Xu, Yuquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.828-836
    • /
    • 2008
  • The biocontrol rhizobacterium Pseudomonas sp. M18 can produce two kinds of antibiotics, namely pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), and is antagonistic against a number of soilborne phytopathogens. In this study, a luxR-type quorum-sensing regulatory gene, vqsR, was identified and characterized immediately downstream of the Plt gene cluster in strain MI8. A vqsR-inactivated mutant led to a significant decrease in the production of Plt and its biosynthetic gene expression. However, this was restored when introducing the vqsR gene by cloning into the plasmid pME6032 in trans. The vqsR mutation did not exert any obvious influence on the production of PCA and its biosynthetic gene expression and the production of N-acylhomoserine lactones (C4 and C8-HSLs) and their biosynthetic gene rhlI expression. Accordingly, these results introduce VqsR as a regulator of Plt production in Pseudomonas spp., and suggest that the regulatory mechanism of vqsR in strain M18 is distinct from that in P. aeruginosa. In addition, it was demonstrated that vqsR mutation did not have any obvious impact on the expression of Plt-specific ABC transporters and other secondary metabolic global regulators, including GacA, RpoS, and RsmA.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Electrode Fabrication of MWCNT-PDMS Strain Sensors by Wet-etching (습식 식각을 이용한 MWCNT-PMDS 변형율 센서 전극 생성에 관한 연구)

  • Jung, La-Hee;Hwang, Hui-Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2021
  • This paper investigated the electrical properties of multiwall carbon nanotube reinforced polydimethylsiloxane (CNT-PDMS) strain sensors with copper electrodes on the wet-etched surface. MWCNT-PDMS strain sensors were fabricated according to the wt% of MWCNT. Surfaces on the electrode area were wet-etched with various etching duration and silver epoxy adhesives were spread on the wet-etched surface. Finally, we attached the copper electrodes to the MWCNT-PMDS strain sensors. We checked the electric conductivities by the two-probe method and sensing characteristics under the cyclic loading. We observed the electric conductivity of MWCNT-PDMS strain sensors increased sharply and the scattering of the measured data decreased when the surface of the electrode area was wet-etched. Initial resistances of MWCNT-PDMS strain sensors were inversely proportion to wt% of MWCNT and the etching duration. However, the resistance changing rates under 30% strain increased as wt% of MWCNT and the etching duration increased. Decreasing rate of the electric resistance change after 100 repetitions was smaller when wt% of MWCNT was larger and the etching duration was short. This was due to the low initial resistance of the MWCNT-PMDS strain sensors by the wet-etching.

The Classification and Investigation of Smart Textile Sensors for Wearable Vital Signs Monitoring (웨어러블 생체신호 모니터링을 위한 스마트텍스타일센서의 분류 및 고찰)

  • Jang, Eunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.6
    • /
    • pp.697-707
    • /
    • 2019
  • This review paper deals with materials, classification, and a current article investigation on smart textile sensors for wearable vital signs monitoring (WVSM). Smart textile sensors can lose electrical conductivity during vital signs monitoring when applying them to clothing. Because they should have to endure severe conditions (bending, folding, and distortion) when wearing. Imparting electrical conductivity for application is a critical consideration when manufacturing smart textile sensors. Smart textile sensors fabricate by utilizing electro-conductive materials such as metals, allotrope of carbon, and intrinsically conductive polymers (ICPs). It classifies as performance level, fabric structure, intrinsic/extrinsic modification, and sensing mechanism. The classification of smart textile sensors by sensing mechanism includes pressure/force sensors, strain sensors, electrodes, optical sensors, biosensors, and temperature/humidity sensors. In the previous study, pressure/force sensors perform well despite the small capacitance changes of 1-2 pF. Strain sensors work reliably at 1 ㏀/cm or lower. Electrodes require an electrical resistance of less than 10 Ω/cm. Optical sensors using plastic optical fibers (POF) coupled with light sources need light in-coupling efficiency values that are over 40%. Biosensors can quantify by wicking rate and/or colorimetry as the reactivity between the bioreceptor and transducer. Temperature/humidity sensors require actuating triggers that show the flap opening of shape memory polymer or with a color-changing time of thermochromic pigment lower than 17 seconds.

Two-Axis Force Rransducer for Measuring Flange Reaction Forces in the Tape Transport of VCR (VCR 주행장치의 2축 플랜지 반력 측정장치 개발)

  • Joo, Jin-Won;Kim, Seung-Hwan;Kim, Gap-Soon;Lee, Kyeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2213-2222
    • /
    • 1996
  • This paper presents the design process and evaluaation results of a two-axis force transducer for measuring flange reaction forces. A double-cantilever beam structure is used as a sensing element, and its optimal configuration is determined based on the derived strain equations to maximize the sensitivity and minimize the regid body displacements. To reduce the coupling errors between two-axis forces, strain distributions by finite elemetns analysis are utilized and the Wheaststone bridge cricuits composed of strain gages are built such that the output voltage should be zero, although strains of four strain gages are not zero. Calibration test shows that the two-azxis force transducer developed in this paper is useful in measuring flange reaction forces within the coupling error of 5.53%.

Strain monitoring of the rail during train loading condition using optical fiber sensor (광섬유센서를 이용한 열차하중 작용시 레일의 변형을 모니터링)

  • Yoon, Hyuk-Jin;Song, Kwang-Yong;Kim, Dae-Sang;Kim, Ki-Hwan;Kim, Jung-Seok;Kwon, Tae-Soo;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1514-1518
    • /
    • 2009
  • Recently, railroad construction has been increased all over the world and as the train is getting high-speeded, there has been a need for guaranteed safety, so that a requirement for heath monitoring techniques for destruction that generated by gradually accumulated damages is now increasing. Especially the rail is crucial part that contact with wheel directly and delivers the train's load to a sleeper. It needs a technique that can guarantee a safety by sensing the possible cracks. In this paper, when train's load applied to the rail, strain distribution that introduced to entire length of rail is monitored using optical fibre. Optical fibre is used as a medium for measuring the strain and BOCDA (Brillouin Optical Correlation Domain Analysis) system is organized for measuring the distributed variation that implied to optical fibre. Optical fibre is attached at lower flange where tension is maximized when the load of train applied to the rail and strain gauge is implied together to compare the accuracy of measurement.

  • PDF

Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics (신축성 전자소자를 위한 신축성 전극 및 스트레인 센서 개발 동향)

  • Park, Jin Yeong;Lee, Won Jae;Nam, Hyun Jin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.25-34
    • /
    • 2018
  • In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.

The Analysis of Expression of Autoinducer Synthesis Genes Involved in Quorum Sensing among Catheter Associated Bacteria (요로감염에 관여하는 카테터 내 박테리아의 Quorum Sensing 관련 autoinducer 합성 유전자의 발현분석)

  • Lee, Mi-Hye;Seo, Pil-Soo;Lee, Ji-Youl;Peck, Kyong-Ran;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.277-285
    • /
    • 2006
  • The most biofilm forming bacteria in catheter, Esctherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were isolated and identified from a patient's catheter occuring catheter-associated urinary tract infection (CA-UTI). We examined mRNA expression and its quantification of AIs synthetic genes encoding signal substance of quorum sensing from each bacterial species in order to elucidated quorum sensing mechanism. Both pure cultures for each bacterial strains and a mixed cultures with three were grown for 24 hr and 30 days. Initial densities to be able to detect mRNA expression oil single strains culture were shown at $2.4{\times}10^5$ CFU/ml, $5.4{\times}10^6$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $6.9{\times}10^4$ CFU/ml of P. aeruginosa for rhlI and lasI. Also, in mixed culture of three, initial cell densities of mRNA expression were appear to at $7.3{\times}10^5$ CFU/ml, $1.6{\times}10^7$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $2.1{\times}10^5$ CFU/ml of P. aeruginosa for rhlI and lasI. Each AIs synthetic gene was expressed in initial cell density and the mRNA expression of the genes were detected continously during 30 days. And then, the quantification of mRNA expression level of ygaG, rhlI, last, and luxS which were related AIs synthesis was done each time point by real-time RT-PCR. Interestingly, the mRNA levels of ygaG, rhlI, lasI, and luxS from the mixed culture was higher than those from each single strain culture. In the case of E. coli ygaG, the amount of transcript from the mixed culture was at least 30 times for that from single culture. In the case of P. aeruginosa rhlI and lasI, the amount of transcript from the mixed culture was at least 40 times and 250 times for that from single strain culture. In the case of S. aureus luxS, the amount of transcript from the mixed culture was at least 5 times for that from single strain culture. And specially, the mRNA expression of rhlI and lasI of P. aeruginosa showed the highest efficency among four AIs synthetic genes.

Structural Design and Evaluation of Six-component Wheel Dynamometer (6축 휠 동력계의 구조설계 및 평가)

  • Kim, Man Gee;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • Wheel dynamometers are used to measure dynamic load that is conveyed from the road to a vehicle while driving. In this paper, two types of six-component wheel dynamometers utilizing shear deformation and bending deformation were designed and evaluated. Prior to designing the shear and bending type wheel dynamometers, the shear and bending deformation behaviors of the basic structure of the wheel dynamometer itself were analyzed using finite element analysis. Strain analysis was performed repeatedly in order to obtain a similar output sensing strain for each load component. The design was modified with a bridge circuit in order to minimize coupling strain. The results indicated that the shear type dynamometer was expected to obtain stable characteristics due to uniform strain distribution while the bending type dynamometer was expected to obtain high-quality sensitivity performance due to consistent output sensitivity.