Browse > Article
http://dx.doi.org/10.5805/SFTI.2019.21.6.697

The Classification and Investigation of Smart Textile Sensors for Wearable Vital Signs Monitoring  

Jang, Eunji (Dept. of Clothing & Textiles, Yonsei University)
Cho, Gilsoo (Dept. of Clothing & Textiles, Yonsei University)
Publication Information
Fashion & Textile Research Journal / v.21, no.6, 2019 , pp. 697-707 More about this Journal
Abstract
This review paper deals with materials, classification, and a current article investigation on smart textile sensors for wearable vital signs monitoring (WVSM). Smart textile sensors can lose electrical conductivity during vital signs monitoring when applying them to clothing. Because they should have to endure severe conditions (bending, folding, and distortion) when wearing. Imparting electrical conductivity for application is a critical consideration when manufacturing smart textile sensors. Smart textile sensors fabricate by utilizing electro-conductive materials such as metals, allotrope of carbon, and intrinsically conductive polymers (ICPs). It classifies as performance level, fabric structure, intrinsic/extrinsic modification, and sensing mechanism. The classification of smart textile sensors by sensing mechanism includes pressure/force sensors, strain sensors, electrodes, optical sensors, biosensors, and temperature/humidity sensors. In the previous study, pressure/force sensors perform well despite the small capacitance changes of 1-2 pF. Strain sensors work reliably at 1 ㏀/cm or lower. Electrodes require an electrical resistance of less than 10 Ω/cm. Optical sensors using plastic optical fibers (POF) coupled with light sources need light in-coupling efficiency values that are over 40%. Biosensors can quantify by wicking rate and/or colorimetry as the reactivity between the bioreceptor and transducer. Temperature/humidity sensors require actuating triggers that show the flap opening of shape memory polymer or with a color-changing time of thermochromic pigment lower than 17 seconds.
Keywords
smart textile sensors; pressure and force sensors; strain sensors; electrodes; optical sensors; biosensors; temperature/humidity sensors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sinha, S. K., Noh, Y., Reljin, N., Treich, G. M., Hajeb-Mohammadalipour, S., Guo, Y., ... & Sotzing, G. A. (2017). Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Applied Materials & Interfaces, 9(43), 37524-37528. doi:10.1021/acsami.7b09954   DOI
2 Sprogis, S. K., Currey, J., & Considine, J. (2019). Patient acceptability of wearable vital sign monitoring technologies in the acute care setting: a systematic review. Journal Clinicla Nursing, 28(15-16), 2732-2744. doi:10.1111/jocn.14893   DOI
3 Takamatsu, S., Kobayashi, T., Shibayama, N., Miyake, K., & Itoh, T. (2011). Meter-scale surface capacitive type of touch sensors fabricated by weaving conductive-polymer-coated fibers. In 2011 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP). pp. 142-147. IEEE.
4 Van Langenhove, L., & Hertleer, C. (2004). Smart clothing: a new life. International Journal of Clothing Science and Technology, 16(1/2), 63-72. doi:10.1108/09556220410520360   DOI
5 Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X. M. (2014). Fiber based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310-5336. doi:10.1002/adma.201400633   DOI
6 Zhong, Y., Zhang, F., Wang, M., Gardner, C. J., Kim, G., Liu, Y., ... & Chen, R. (2017). Reversible humidity sensitive clothing for personal thermoregulation. Scientific Reports, 7, 44208. doi:10.1038/srep44208
7 Baysal, G., Onder, S., Gocek, I., Trabzon, L., Kizil, H., Kok, F. N., & Kayaoglu, B. K. (2014). Microfluidic device on a nonwoven fabric: A potential biosensor for lactate detection. Textile Research Journal, 84(16), 1729-1741. doi:10.1177/0040517514528565   DOI
8 Bernanose, A. (1955). The mechanism of organic electroluminescence. Journal of Chemical Physics, 52, 396-400.
9 Blucher, J. T., Narusawa, U., Katsumata, M., & Nemeth, A. (2001). Continuous manufacturing of fiber-reinforced metal matrix composite wires? Technology and product characteristics. Composites Part A: Applied Science and Manufacturing, 32(12), 1759-1766. doi:10.1016/S1359-835X(01)00024-0   DOI
10 Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: A review. Smart Materials and Structures, 23(5), 053001. doi:10.1088/0964-1726/23/5/053001   DOI
11 Chang, C. L., Fix, K., & Wang, W. C. (2010). Reliability of PEDOT-PSS strain gauge on foam structure. Proceedings of the International Society for Optics and Photonics 2010 Spring Conference; San Diego, California, USA, pp. 7-11, March, Bellingham, WA, USA: SPIE. doi:10.1117/12.847701
12 Cho, H. S., Jang, E. J., & Cho, G. S. (2019). Characteristics of PEDOT:PSS Impregnated Polyurethane Nanoweb with Post-Thermal-Treatment. Proceedings of the Fiber Society 2019 Annual Spring Conference, Tsim Sha Tsui, Hong Kong, China, pp. 21-23, May, Meade, MD, USA: Fiber Society.
13 Corres, J. M., Garcia, Y. R., Arregui, F. J., & Matias, I. R. (2011). Optical fiber humidity sensors using PVdF electrospun nanowebs. IEEE Sensors Journal, 11(10), 2383-2387. doi:10.1109/JSEN.2011.2123881   DOI
14 Coyle, S., Lau, L., Moyna, N., O'Gorman, D., Diamond, D., Francesco, F., Costanzo, D., Salvo, P., Trivella, M., De Rossi, D. M., Taccini, N., Paradiso, R., Porchet, J. A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Revol-Cavalier, F., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De-Moncuit, H., & Christina, B. (2010). BIOTEX-Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364-370. doi:10.1109/TITB.2009.2038484   DOI
15 Griffiths, D. J., & Reeves, A. (1999). Electrodynamics. introduction to electrodynamics (3rd ed.). New Jersey: Prentice Hall.
16 Ivetic, M., Mojovic, Z., & Matija, L. (2003). Electrical conductivity of fullerene derivatives. Materials Science Forum Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland. 413, 49-52. doi:10.4028/www.scientific.net/MSF.413.49
17 Jang, E. J., & Cho, G. S. (2018). Development of PU nanoweb based electroconductive textiles and exploration of applicability as a transmission line for smart clothing. Fashion & Textile Research Journal, 20(1), 101-107. doi:10.5805/SFTI.2018.20.1.101   DOI
18 Jeong, E. G., Jeon, Y., Cho, S. H., & Choi, K. C. (2019). Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy & Environmental Science, 12(6), 1878-1889. doi:10.1039/C8EE03271H   DOI
19 Jang, E. J., Cho, H. S., & Cho, G. S. (2019a). Enhancing the conductivity of PEDOT:PSS/PU nanoweb via dimethyl sulfoxide solvent treatment. Proceedings of the Fiber Society 2019 Annual Spring Conference, Tsim Sha Tsui, Hong Kong, China, pp. 21-23, May, Meade, MD, USA: Fiber Society.
20 Jang, E. J., Hang, L., & Cho, G. S. (2019b). Characterization and exploration of polyurethane nanofiber webs coated with graphene as a strain gauge. Textile Research Journal, 89(23-24), 4980-4991. doi:10.1177/0040517519844604   DOI
21 Karpagam, K. R., Saranya, K. S., Gopinathan, J., & Bhattacharyya, A. (2017). Development of smart clothing for military applications using thermochromic colorants. The Journal of the Textile Institute, 108(7), 1122-1127. doi:10.1080/00405000.2016.1220818
22 Kim, I. H., Lee, E. G., Jang, E. J., & Cho, G. S. (2018). Characteristics of polyurehtane nanowebs treated with silver nanowire solutions as strain sensors. Textile Research Journal, 88(11), 1215-1225. doi:10.1177/0040517517697647   DOI
23 Kim, I. H., & Cho, G. S. (2018). Polyurethane nanofiber strain sensors via in-situ polymerization of polypyrrole and application to monitoring joint flexion. Smart Materials Structures, 27(7), 075006. doi:10.1088/1361-665X/aac0b2   DOI
24 Kim, J., Campbell, A. S., de Ávila, B. E. F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology. 37, 389-406. doi:10.1038/s41587-019-0045-y   DOI
25 Pan, L. S., & Kania, D. R. (1994). Diamond: electronic properties and applications. Berlin: Springer.
26 Lee, E. G., & Cho, G. S. (2019). PU nanoweb-based textile electrode treated with single-walled carbon nanotube/silver nanowire and its application to ECG monitoring. Smart Materials Structures, 28(4), 045004. doi:10.1088/1361-665X/ab06e0   DOI
27 Masuda, A., Murakami, T., Honda, K., & Yamaguchi, S. (2006). Optical properties of woven fabrics by plastic optical fiber. Journal of Textile Engineering, 52(3), 93-97. doi:10.4188//jte.52.93   DOI
28 Mukai, K., Asaka, K., Wu, X., Morimoto, T., Okazaki, T., Saito, T., & Yumura, M. (2016). Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Applied Physics Express, 9(5), 055101. doi:10.7567/APEX.9.055101   DOI
29 Pani, D., Achilli, A., Spanu, A., Bonfiglio, A., Gazzoni, M., & Botter, A. (2019). Validation of polymer-based screen-printed textile electrodes for surface EMG detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(7), 1370-1377 doi:10.1109/TNSRE.2019.2916397   DOI
30 Park, S. H., Lee, H. B., Yeon, S. M., Park, J., & Lee, N. K. (2016). Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Applied Materials & Interfaces, 8(37), 24773-24781. doi:10.1021/acsami.6b07833   DOI
31 Park, S. Y., Shin, M. K., Kim, H. J., Yeo, C. S., Cho, Y. J., & Cho, K. R. (2017). Method for manufacturing graphene oxide fiber, graphene fiber, and graphene or graphene (oxide) composite fiber by using elelctric field-induced wet spinning process. KO. Patent No. WO 2017/188564A1.
32 Peters, K. (2010). Polymer optical fiber sensors -a review. Smart Materials and Structures, 20(1), 013002. doi:10.1088/0964-1726/20/1/013002   DOI
33 Rothmaier, M., Luong, M., & Clemens, F. (2008a). Textile pressure sensor made of flexible plastic optical fibers. Sensors, 8(7), 4318-4329. doi:10.3390/s8074318   DOI
34 Rothmaier, M., Selm, B., Spichtig, S., Haensse, D., & Wolf, M. (2008b). Photonic textiles for pulse oximetry. Optics Express, 16(17), 12973-12986. doi:10.1364/OE.16.012973   DOI
35 Rubacha, M., & Zieba, J. (2007). Magnetic cellulose fibres and their application in textronics. Fibres & Textiles in Eastern Europe, 15(5), 64-65.
36 Selm, B., Gurel, E. A., Rothmaier, M., Rossi, R. M., & Scherer, L. J. (2010). Polymeric optical fiber fabrics for illumination and sensorial applications in textiles. Journal of Intelligent Material Systems and Structures, 21(11), 1061-1071. doi:10.1177/1045389X10377676   DOI
37 Serway, R. A., & Jewett, J. W. (1998). Principles of physics (Vol. 1). Fort Worth, TX: Saunders College Pub.