Browse > Article
http://dx.doi.org/10.5423/PPJ.SI.11.2012.0173

Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166  

Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Systems and Synthetic Biology Research Center, KRIBB)
Choi, Hye Kyung (Molecular Phytobacteriology Laboratory, Systems and Synthetic Biology Research Center, KRIBB)
Lee, Chi-Ho (Department of Biomedicinal Science & Biotechnology, Paichai University)
Murphy, John F. (Department of Entomology and Plant Pathology, Auburn University)
Lee, Jung-Kee (Department of Biomedicinal Science & Biotechnology, Paichai University)
Kloepper, Joseph W. (Department of Entomology and Plant Pathology, Auburn University)
Publication Information
The Plant Pathology Journal / v.29, no.2, 2013 , pp. 182-192 More about this Journal
Abstract
Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.
Keywords
AiiA; N-Acyl homoserine lactone; plant-growth promoting rhizobacteria; quorum sensing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Audenaert, K., Pattery, T., Cornelis, P. and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15:1147−1156.
2 Cho, H. S., Park, S. Y., Ryu, C.-M., Kim, J. F., Kim, J. G. and Park, S. H. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60:14− 23.
3 Cortes-Barco, A. M., Goodwin, P. H. and Hsiang, T. 2010a. Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59:643−653.
4 Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157:179-189.   DOI   ScienceOn
5 De Vleesschauwer, D. and Hofte, M. 2009. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 51:223−281.
6 Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F. and Zhang, L. H. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acylhomoserine lactonase. Nature 411: 813−817.   DOI   ScienceOn
7 Enebak, S. A. and Carey, W. A. 2000. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria. Plant Dis. 84:306−308.   DOI   ScienceOn
8 Fray, R. G., Throup, J. P., Wallace, A., Daykin, M., Williams, P., Stewart, G. S. A. B. and Grierson, D. 1999. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nature Biotechnol. 17:1017−1020.
9 Fray, R. G. 2002. Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann. Bot. 89:245−53.
10 Schaefer, A. L., Hanzelka, B. L., Parsek, M. R. and Greenberg, E. P. 2000. Detection, purication, and structural elucidation of the acylhomoserine lactone inducer of Vibrio scheri luminescence and other related molecules. Methods Enzymol. 305:288−301.   DOI
11 Kloepper, J. W., Tuzun, S. and Kuc, J. A. 1992. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 2:349−351.
12 Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E. Jr., Rinehart, K. L. and Farrand, S. K. 1997. Detecting and characterizing N-acylhomoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94:6036−6041.
13 Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A. and Kogel, K. H. 2011. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157:1407−1418.   DOI   ScienceOn
14 Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactoneproducing rhizosphere bacteria. Plant Cell Environ. 29:909−918.   DOI   ScienceOn
15 Kloepper, J. W., Ryu, C.-M. and. Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259−1266.   DOI   ScienceOn
16 Kloepper, J. W. and Ryu, C.-M. 2006. Bacterial endophytes as elicitors of induced systemic resistance. In: Soil Biology, eds. by B. S. Schulz, C. Boyle and T. N. Sieber, Volume 9 Microbial Root Endophytes. pp. 33−52. Berlin Heidelberg: Springer-Verlag. Germany.
17 Kovacikova, G., Lin, W. and Skorupski, K. 2005. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetateresponsive LysR-type regulator AlsR in Vibrio Cholerae. Mol. Microbiol. 57:420−433.
18 Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G. and Bauer, W. D. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA 100:1444−1449.
19 Moons, P., Van Houdt, R., Vivijs, B., Michiels, C. M. and Aertsen, A. 2011. Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl. Environ. Microbiol. 77: 3422−3427.
20 Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria Annu. Rev. Microbiol. 55:165−199.
21 Morello, J. E., Pierson, E. A. and Pierson, L. S. 3rd. 2004. Negative cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30−84. Appl. Environ. Microbiol. 70:3103−3109.
22 Murphy, J. F., Reddy, M. S., Ryu, C.-M., Kloepper, J. W. and Li, R. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301−1307.
23 Naylor, M., Murphy, A. M., Berry, J. O. and Carr, J. P. 1998. Salicylic acid can induce resistance to plant virus movement. Mol. Plant-Microbe Interact. 11:860−868.
24 Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L. and Guo, J. H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol. Plant-Microbe Interact. 24:533−542.
25 Pang, Y., Liu, X., Ma, Y., Chernin, L., Berg, G. and Gao, K. 2009. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. PlantPathol. 124:261−268.
26 Pierson, L. S. 3rd., Wood, D. W. and Pierson, E. A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36:207−25.
27 Rao, B., Zhang, L. Y., Sun, J., Su, G., Wei, D., Chu, J., Zhu, J. and Shen, Y. 2012. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl. Microbiol. Biotechnol. 93:2147−2159.
28 Press, C. M., Loper, J. E. and Kloepper, J. W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91:593−598.
29 Zhang, S., Reddy, M. S. and Kloepper J. W. 2004. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262:277−288.
30 Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90−166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10:761−768.
31 Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S. and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80:891−894.   DOI   ScienceOn
32 Reimmann, C., Ginet, N., Michel, L., Keel, C., Michaux, P., Krishnapillai, V., Zala, M., Heurlier, K., Triandafillu, K., Harms, H., Defago, G. and Haas, D. 2002. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923−932.
33 Robert-Seilaniantz, A., Grant, M. and Jones, J. D. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate- salicylate antagonism. Annu. Rev. Phytopathol. 2011: 49:317−43.
34 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809−1819.   DOI   ScienceOn
35 Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Paré, P. W. 2004a. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017−1026.
36 Ryu, C.-M., Murphy, J. F., Mysore, K. S. and Kloepper, J. W. 2004b. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic aciddependent signaling pathway. Plant J. 39:381−392.
37 Van Houdt, R., Moons, P., Aertsen, A., Jansen, A., Vanoirbeek, K., Daykin, M., Williams, P. and Michiels, C. W. 2007. Characterization of a luxI/luxR-type quorum sensing system and N-acyl-homoserine lactone-dependent regulation of exoenzyme and antibacterial component production in Serratia plymuthica RVH1. Res. Microbiol. 158:150−158.
38 Hahm, M. S., Sumayo, M., Hwang, Y. J., Jeon, S. A., Park, S. J., Lee, J. Y., Ahn, J. H., Kim, B. S., Ryu, C. M. and Ghim, S. Y. 2012. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J. Microbiol. 50:380−385.
39 Teplitski, M., Robinson, J. B. and Bauer, W. D. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact. 13:637−648.
40 Van Houdt, R., Moons, P., Hueso Buj, M. and Michiels, C. W. 2006. N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. J. Bacteriol. 188:4570−4572.
41 Whiteley, M., Lee, K. M. and Greenberg, E. P. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 96:13904−13909.
42 Wilson, M., Ezelle, J. E., Press, C. M., Park, K. S., Farrand, S. K., Pierson III, L. S. and Kloepper, J. W. 1997. Autoinducer production in Serratia marcescens 90−166. Phytopathology 87:S103.
43 Yang, J. W., Yi, H.-S., Kim, H., Lee, B., Lee, S., Ghim, S.-Y. and Ryu, C.-M. 2011. Whitefly infestation elicits defense responses against bacterial pathogens on the leaf and root and belowground dynamic change of microflora in pepper. J. Ecol. 99:46−56.
44 Zhang, S., Moyne, A.-L., Reddy, M. S. and Kloepper, J. W. 2002. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Control 25:288−296.