• Title/Summary/Keyword: stomatal characteristics

Search Result 99, Processing Time 0.047 seconds

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Conflicting Physiological Characteristics and Aquaporin (JcPIP2) Expression of Jatropha (Jatropha curcas L.) as a Bio-energy Crop under Salt and Drought Stresses (바이오에너지 작물 소재로서 자트로파의 염과 가뭄 스트레스 하에서 상반되는 생리적 특성과 아쿠아포린(JcPIP2)의 발현)

  • Jang, Ha-Young;Lee, Ji-Eun;Jang, Young-Seok;Ahn, Sung-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.183-191
    • /
    • 2011
  • This study was undertaken to collect basic knowledge of Jatropha which is one of bio-energy crops, based on the understanding of physiological and molecular aspects under salt and drought conditions. The treatments were followed as: 100, 200 and 300 mM NaCl for salt stress and 5, 10, 20 and 30% PEG for drought stress for 8 days, respectively. Leaf growth, stomatal conductance, chlorophyll fluorescence and gene expression of aquaporin (JcPIP2) of Jatropha were investigated. From 2 days after treatments, plants treated with higher than 100 mM NaCl and 10% PEG respectively were significantly suppressed in leaf length, width, and stomatal conductance, but 5% PEG treatment showed that plant growth was improved more than control plant. Semi-quantitative RT-PCR analyses revealed that the JcPIP2 gene was expressed in root, stem, cotyledon and leaves. It was not detected in leaves at 200 and 300 mM NaCl treatments. However, transcripts of JcPIP2 were induced in roots and stems under salt and drought conditions compared to those of healthy plants. Therefore, it was concluded that JcPIP2 plays an important role in improving drought tolerance.

Effect of Calcium Chloride (CaCl2) on the Characteristics of Photosynthetic Apparatus, Stomatal Conductance, and Fluorescence Image of the Leaves of Cornus kousa (염화칼슘 처리가 산딸나무 잎의 광합성 기구, 기공전도도 및 형광이미지 특성에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 2009
  • Deicing salt is used to melt snow and ice on the road for traffic safety during the winter season, which accumulates in the roadside vegetation and induces visible injuries. The damage may accelerate particularly when it coincides with early spring leaf out. In order to better understand the response mechanisms, C. kousa (3-year-old) was irrigated twice prior to leaf bud in a rhizosphere with solutions of 0.5, 1.0, and 3.0% calcium chloride ($CaCl_2$) concentration, that were made by using an industrial $CaCl_2$ reagent practical deicing material in Seoul. Physiological traits of the mature leaves were progressively reduced by $CaCl_2$ treatment, resulting in reductions of total chlorophyll contents, chlorophyll a:b, photosynthetic rate, quantum yield, stomatal conductance, $F_V/F_M$, and NPQ. On the contrary, light compensation point and dark respiration were increased at high $CaCl_2$ concentration. A decrease in intercellular $CO_2$ concentration by stomatal closure first resulted in a reduced photosynthetic rate and then was accompanied by low substance metabolic rates and photochemical damage. Based on the reduction of physiological activities at all treatments ($CaCl_2$ 0.5%, 1.0%, and 3.0%), C. kousa was determined as one of the sensitive species to $CaCl_2$.

Study on the photosynthetic characteristics of Eutrema japonica (Siebold) Koidz. under the pulsed LEDs for simulated sunflecks

  • Park, Jae Hoon;Kim, Sang Bum;Lee, Eung Pill;Lee, Seung Yeon;Kim, Eui Joo;Lee, Jung Min;Park, Jin Hee;Cho, Kyu Tae;Jeong, Heon Mo;Choi, Seung Se;Park, Hoey Kyung;You, Young Han
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.54-61
    • /
    • 2021
  • Background: The sunfleck is an important light environmental factor for plants that live under the shade of trees. Currently, the smartfarm has a system that can artificially create these sunfleks. Therefore, it was intended to find optimal light conditions by measuring and analyzing photosynthetic responses of Eutrema japonica (Miq.) Koidz., a plant living in shade with high economic value under artificial sunflecks. Results: For this purpose, we used LED pulsed light as the simulated sunflecks and set the light frequency levels of six chambers to 20 Hz, 60 Hz, 180 Hz, 540 Hz, 1620 Hz, and 4860 Hz of a pulsed LED grow system in a plant factory and the duty ratio of the all chambers was set to 30%, 50%, and 70% every 2 weeks. We measured the photosynthetic rate, transpiration rate, stomatal conductance, and substomatal CO2 partial pressure of E. japonica under each light condition. We also calculated the results of measurement, A/Ci, and water use efficiency. According to our results, the photosynthetic rate was not different among different duty ratios, the transpiration rate was higher at the duty ratio of 70% than 30% and 50%, and stomatal conductance was higher at 50% and 70% than at 30%. In addition, the substomatal CO2 partial pressure was higher at the duty ratio of 50% than 30% and 70%, and A/Ci was higher at 30% than 50% and 70%. Water use efficiency was higher at 30% and 50% than at 70%. While the transpiration rate and stomatal conductance generally tended to become higher as the frequency level decreased, other physiological items did not change with different frequency levels. Conclusions: Our results showed that 30% and 50% duty ratios could be better in the cultivation of E. japonica due to suffering from water stress as well as light stress in environments with the 70% duty ratio by decreasing water use efficiency. These results suggest that E. japonica is adapted under the light environment with nature sunflecks around 30-50% duty ratio and low light frequency around 20 Hz.

Effects of Shading Treatments on Photosynthetic rate and Growth in Codonopsis lanceloata Trautv. (차광처리가 더덕의 광합성율과 생육에 미치는 영향)

  • Won, Jun-Yeon;Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.152-156
    • /
    • 2007
  • The Condonopsis lanceolata Trautv. was planted in field to investigate the effect of afterwards shading in the condition of sun light of fifty six percent on the characteristics of photosynthesis according to leaf position at flowering stage. The vine length and leaf area were increased with shading treatment in comparison with that of non-shading. Dry weight of leaf and vine indicate opposite tendency with the result above. SLA (specific leaf area) was much more increased in shaded leaves than that obtained from non-shading treatment. The shaded leaves of plant show a higher SPAD value than that of non-shaded leaves. The net photosynthetic rate and stomatal conductance were increased as the PAR was increased. And it is the maximum valve (PAR of 700-1000 ${\mu}$mol/m$^2$/s of PAR) of all leaves. Overnurse and light saturation point of the Condonopsis lanceolata Trautv. shading-treated was improved in comparison with control as net photosynthetic rates of leaves positioned on each part of the stem was increased.

Physiological Characteristics and Antioxidant Enzyme Activity of Populus euramericana and Populus alba x Populus glandulosa under Livestock Waste Leachate Treatment (돈분침출수 처리에 의한 이태리포플러와 현사시나무의 생리적 특성 및 항산화효소 활성)

  • Je, Sun Mi;Woo, Su Young;Koo, Yeong Bon;Woo, Kwan Soo;Yeo, Jin Ki;Ryang, Soo Zin
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.369-375
    • /
    • 2007
  • We examined two Populus species (Populus euramericana and Populus alba ${\times}$ Populus glandulosa) trees grown under livestock waste leachate treatment in the field. We investigated their physiological properties (photosynthetic rate, chlorophyll contents, transpiration rate and intercellular $CO_2$ concentration) and antioxidant enzyme activities. Ascorbate peroxidase and glutathione reductase were analyzed. According to our measurements, P. euramericana at control site showed a lower total chlorophyll contents, photosynthetic rate, intercellular $CO_2$ concentration, transpiration and stomatal conductance than those of trees at treatment site. P. alba ${\times}$ P. glandulosa showed low stomatal conductance and low photosynthetic rate.

Effect of Shading Treatments on Photosynthetic Activity of Adenophora triphylla var. japonicum (차광처리가 잔대의 광합성 활성에 미치는 영향)

  • Kim, Jeong-Woon;Yoon, Jun-Hyuck;Jeon, Kwon-Seok;Chung, Jae-Min;Jung, Hye-Ran;Cho, Min-Gi;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.93-99
    • /
    • 2012
  • This study was conducted to investigate photosynthetic characteristics of two-year-old of Adenophora triphylla var. japonicum grown under control (full sunlight) and three different shading treatment (25, 50, and 75% shading treatment). Total chlorophyll contents like chlorophyll a and b content had not significant difference among treatments. Net photosynthetic rate of control and 25% treatment were higher than 50% and 75% treatment. Seedlings grown under full sunlight showed the highest photosynthetic activity such as photosynthetic rate, stomatal conductance and intercellular $CO_2$ concentration except for water use efficiency which was relative higher under 50% and 75% treatment.

Taxonomic Characteristics of Korean-native Anacardiaceae (한국산(韓國産) 옻나무과(科)의 분류학적(分類學的) 연구(硏究))

  • Kim, Sam Sik;Chung, Jae Min
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.151-165
    • /
    • 1995
  • This study was conducted to establish a systematized taxonomic problems of through the leaf morphological characters and leaf venation patterns, and stomatal cell patterns and cell characteristics of abaxial and adaxial surface of the leaflets by SEM, of 6 native species in Korea and 2 foreign species of the Genus Rhus in the Family Anacardiaceae. The results obtained from this study are summarized as followings: 1. Morphological study measured 32 characters of leaves from herbarium specimen and field-collected samples for each species. The results of cluster analysis based on the Euclidean distance showed that the species could be classified into 3 groups: R. sylvestris. R. typhina, R. succedanea: R. trichocarpa. R. chinensis. R. verniciflua: and R. ambigua. R. radicans subsp. orientale, Analysis of principal components showed 5 groups: The major factors in the first principal component group was length of petiole of the terminal leaflets, that in the second group angle of left side in the terminal leaflet bash, that in the third group area ratio between first and terminal leaflets, that in the forth group angle ratio between right and left side in the terminal leaflet base, and that in the fifth group was angle of main and secondary vein at midrib of terminal leaflet. Cumulative contribution by the first, second and third principal component group was explained with 82.6%, a large percent of all information. 2. The leaf venation pattern investigated using soft X-ray photography revealed clado-and reticulo-camptodromous types according to branching angle of the secondary vein. And three groups by the developing degree of secondary vein were R. trichocarpa, R. ambigua. R. chinensis, R. typhina; R. radicans subsp. onentale, R. succedanea, R. verniciflua: and R. sylvestris. Classification key for the Rhus of Korean-native Anacardiaceae was made by the venation pattern and devevoping degree of the secondary vein. 3. The stomatal cell patterns were greatly classified into paracytic and anomocytic types, specific among species according to stomatal and subsidiary cell patterns, and various differences among the species was determined. Microstructure of the adaxial and abaxial surfaces could be divided into synclinal and anticlinal cell wall patterns, and were specific-species. Stomatal cells of R. chinensis were surrounded with characterized villus-like cells.

  • PDF

Physiological Characteristics and Morphological Changes of Chinese Cabbage (Brassica rapa L. ssp. campestris) to Potassium Toxicity (칼륨 독성에 의한 배추의 생리적 특성과 형태적 변화)

  • Lee, Taek-Jong;Luitel, Binod Prasad;Heo, Kweon;Choi, Bong-Jun;Kang, Won-Hee
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.311-319
    • /
    • 2011
  • Overusing chemical fertilizers involves potassium accumulation in the soil, which can become a toxicity problem in agriculture. This study was conducted to investigate the effect of potassium (K) treatment on growth, physiological characteristics, and morphological changes using Chinese cabbage (Brassica rapa L. ssp. campestris). With high (600 mM) K treatment, the plant growth traits of leaf length, leaf area, and fresh and dry weight of shoots and roots decreased, whereas chlorophyll content increased. As the concentration of K increasing, total N, P, and K increased in leaves, but concentrations of Ca, Mg, and Na decreased. However, Mn, Fe and Zn contents were highest in 100 mM K treatment. Chlorophyll a, b, and carotenoids increased with increasing K concentration. Maximum photochemical efficiency ($F_v/F_m$) was not significant in the all treatments, whereas $CO_2$ assimilation decreased with increasing K level due to stomatal degradation. Total free amino acids increased with the 10 and 100 mM K but decreased at 600 mM K treatments. Therefore, the growth and physiological characteristics of Chinese cabbage ascertained that tolerance up to 100 mM K when grown with nutrient solution in pot culture.

Responses of Native Trees Species in Korea under Elevated Carbon Dioxide Condition - Open Top Chamber Experiment (상부 개방형 온실을 이용한 대기 중 이산화탄소 농도 증가가 우리나라 자생 수종에 미치는 형태적, 생리적 영향)

  • Ryu, Daun;Bae, Jinho;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Oh, Chang-Young;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.199-212
    • /
    • 2014
  • The physiological responses of three common temperate species, Pinus densiflora, Fraxinus rhynchophylla, Sorbus alnifolia to elevated $CO_2$ was investigated using open top chambers with different $CO_2$ concentrations. Morphological (stomatal size, density and area) and physiological characteristics (maximum rates of photosynthesis, carboxylation and electron transport) were compared among trees grown under ambient, ambient ${\times}1.4$ (~550 ppm) and ambient ${\times}1.8$ (~700 ppm) $CO_2$ concentrations for last four years. Morphological responses were different among species. F. rhynchophyllar increased their stomatal size and S. alnifolia had higher stomatal density under elevated $CO_2$ than ambient. Stomatal area decreased in P. densiflora, whereas it increased in S. alnifolia. However, the maximum photosynthesis rate increased in all species up to 43.5% by S. alnifolia under elevated $CO_2$ and the enhancement increased with time. Even with four years of exposure to elevated $CO_2$, there was no sign of acclimation in the maximum carboxylation rate and the maximum electron transport rates in all species. Especially, S. alnifolia even showed the temporary increase of photosynthetic capacities in spring, when leaf nitrogen concentration was high with new leaf development. There was no significant differences in diameter growth rate in any species due to high variation in their tree sizes, however accumulated diameter and biomass for four years showed significantly increment in all species under elevated $CO_2$. For example, S. alnifolia showed 59% increase in diameter at the ambient ${\times}1.8$ (~700 ppm) compared to ambient.