DOI QR코드

DOI QR Code

Conflicting Physiological Characteristics and Aquaporin (JcPIP2) Expression of Jatropha (Jatropha curcas L.) as a Bio-energy Crop under Salt and Drought Stresses

바이오에너지 작물 소재로서 자트로파의 염과 가뭄 스트레스 하에서 상반되는 생리적 특성과 아쿠아포린(JcPIP2)의 발현

  • Jang, Ha-Young (Department of Bioenergy Science and Technology, Bioenergy Research Center, College of Agriculture & Life Science, Chonnam National University) ;
  • Lee, Ji-Eun (Department of Bioenergy Science and Technology, Bioenergy Research Center, College of Agriculture & Life Science, Chonnam National University) ;
  • Jang, Young-Seok (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Ahn, Sung-Ju (Department of Bioenergy Science and Technology, Bioenergy Research Center, College of Agriculture & Life Science, Chonnam National University)
  • 장하영 (전남대학교 바이오에너지공학과 바이오에너지연구센터) ;
  • 이지은 (전남대학교 바이오에너지공학과 바이오에너지연구센터) ;
  • 장영석 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안성주 (전남대학교 바이오에너지공학과 바이오에너지연구센터)
  • Received : 2011.04.21
  • Accepted : 2011.06.01
  • Published : 2011.09.30

Abstract

This study was undertaken to collect basic knowledge of Jatropha which is one of bio-energy crops, based on the understanding of physiological and molecular aspects under salt and drought conditions. The treatments were followed as: 100, 200 and 300 mM NaCl for salt stress and 5, 10, 20 and 30% PEG for drought stress for 8 days, respectively. Leaf growth, stomatal conductance, chlorophyll fluorescence and gene expression of aquaporin (JcPIP2) of Jatropha were investigated. From 2 days after treatments, plants treated with higher than 100 mM NaCl and 10% PEG respectively were significantly suppressed in leaf length, width, and stomatal conductance, but 5% PEG treatment showed that plant growth was improved more than control plant. Semi-quantitative RT-PCR analyses revealed that the JcPIP2 gene was expressed in root, stem, cotyledon and leaves. It was not detected in leaves at 200 and 300 mM NaCl treatments. However, transcripts of JcPIP2 were induced in roots and stems under salt and drought conditions compared to those of healthy plants. Therefore, it was concluded that JcPIP2 plays an important role in improving drought tolerance.

열대작물인 자트로파의 염과 가뭄 스트레스에 따른 생리적 반응과 유전자 발현의 연구를 통해 바이오에너지 작물로서의 기초적 자료를 얻고자 본 실험을 수행하였다. 1. $100{\cdot}200{\cdot}300$ mM NaCl의 염 스트레스와 $5{\cdot}10{\cdot}20{\cdot}30$% PEG의 가뭄 스트레스를 처리하여 잎의 생장, 기공의 전도도, 엽록소 형광, 전해질 유출량을 조사하였다. 자트로파의 잎의 생장, 기공의 전도도, 엽록소 형광, 전해질 유출량을 통한 생육조사 결과 가뭄 스트레스 보다 염 스트레스에서 더 많은 피해를 입었다. 2. 수분 수송과 관련된 아쿠아포린 중에서 JcPIP2가 뿌리, 줄기, 떡잎 그리고 잎에서 모두 고르게 발현하고 있음을 확인하였다. 잎의 JcPIP2는 대조구와 가뭄 스트레스 처리구에서 모두 발현하는 반면, 200 300 mM NaCl 처리구에서는 잎에서 발현하지 않았다. 3. 염과 가뭄 스트레스에서 JcPIP2가 상반되는 반응을 보이는 것은 JcPIP2가 염 스트레스 관련 주요 내재 단백질과 같은 기능을 하는 것으로 판단된다. 4. 자트로파는 염 스트레스보다 가뭄 스트레스에 더 내성을 보이므로 간척지보다는 가뭄지역에서 재배하는 것이 더 유리할 것으로 보인다.

Keywords

References

  1. Baiges I., A. R. Schaffnerb, M. J. Affenzellerb, and A. Masa. 2002. Plant aquaporins. Physiol. Plant. 115 : 175-182. https://doi.org/10.1034/j.1399-3054.2002.1150201.x
  2. Bajji M, J. M. Kinet, and S. Lutts. 2001. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulat. 36 : 1-10.
  3. Bernacchi C. J., C. Calfapietra, P. A. Davey, V. E. Wittig, G. E. Scarascia-Mugnozza, C. A. Raines, and S. P. Long. 2003. Photosynthesis and stomatal conductance responses of poplars to free-air $CO_{2}$enrichment(PopFACE) during the first grow thcy clean dimmed iately following coppice. New Phytol. 159 : 609-621. https://doi.org/10.1046/j.1469-8137.2003.00850.x
  4. Dou X. Y, G. J. Wu, H. Y. Huang, Y. J. Hou, Q. Gu, and C. L. Peng. 2008. Responses of Jatropha curcas L. seedlings to drought stress. Article in Chinese. 19 : 1425-30.
  5. Korbitz W. 1999. Biodiesel production in Europe and North America, an encouraging prospect. Renewable Energy. 16 : 1078-1083. https://doi.org/10.1016/S0960-1481(98)00406-6
  6. Liang Y., H. Chen, M. J. Tang, P. F. Yang,, and S. H. Shen. 2007. Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics. Physiol. Plant. 131 : 508-517. https://doi.org/10.1111/j.1399-3054.2007.00974.x
  7. Luo T., S. M. Peng, W. Y. Deng, D. W. Ma, Y. Xu, M. Xiao, and F. Chen. 2006. Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotechnology Letters. 28 : 657-662. https://doi.org/10.1007/s10529-006-0034-3
  8. Luu D. T. and C. Maurel. 2005. Aquaproins in a challenging environment: Molecular gears for adjusting plant water status. Plant, Cell and Environ. 28 : 85-96. https://doi.org/10.1111/j.1365-3040.2004.01295.x
  9. Maesa W. H., W. M. J. Achtena, B. Reubensa, D. Raesb, R. Samsonc, and B. Muysa. 2009. Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J. Arid Environ. 73 : 877-884. https://doi.org/10.1016/j.jaridenv.2009.04.013
  10. Maxwell K. and G. N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. J. Expt. Bot. 51 : 659-668. https://doi.org/10.1093/jexbot/51.345.659
  11. Openshaw K. 2000. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass and Bioenergy. 19 : 1-15. https://doi.org/10.1016/S0961-9534(00)00019-2
  12. Shinozaki K, K. Yamaguchi-Shinozaki, and M. Seki. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biol. 6 : 410-417. https://doi.org/10.1016/S1369-5266(03)00092-X
  13. Shinozaki K. and K. Yamaguchi-Shinozaki. 2007. Gene networks involved in drought stress response and tolerance. J. Experimental Bot. 58 : 221-227.
  14. Tournaire-Roux C., M. Sutka, H. Javot, E. Gout, P. Gerbeau, D.T. Luu, R. Bligny, and C. Maurel1. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature. 425 : 393-397. https://doi.org/10.1038/nature01853
  15. Xiong L., K. S. Schumaker, and J. K. Zhu. 2002. Cell signaling during cold, drought, and salt stress. The Plant Cell. 14 : 165-183. https://doi.org/10.1105/tpc.010278
  16. Yuan J. S, K. H. Tiller, H. A. Ahmad, N. R. Stewart, and C. N. Stewart. 2008. Plants to power: bioenergy to fuel the future. Trends in Palnt Sci. 13 : 421-429. https://doi.org/10.1016/j.tplants.2008.06.001
  17. Zhang F. L, B. Niu, Y. C. Wang, F. Chen, S. H. Wang, Y. Xu, L. D. Jiang, S. Gao, J. Wu, L. Tang, and Y. J. Jia. 2008. A novel betain aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci. 174 : 510-518. https://doi.org/10.1016/j.plantsci.2008.01.018
  18. Zhang Y., Y. Wang, L. Jiang, Y. Xu, Y. Wang, D. Lu, and F. Chen. 2007. Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochimica et Biophysica Sinica. 39 : 787-794. https://doi.org/10.1111/j.1745-7270.2007.00334.x
  19. Zhu J. K. 2002. Salt and drought stress signal transduction in plants. Annual Rev. Plant Biol. 53 : 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

Cited by

  1. The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses vol.171, pp.15, 2014, https://doi.org/10.1016/j.jplph.2014.06.009
  2. Two aquaporins of Jatropha are regulated differentially during drought stress and subsequent recovery vol.170, pp.11, 2013, https://doi.org/10.1016/j.jplph.2013.03.001
  3. Overexpression of Jatropha aquaporin genes, JcPIP1 and JcPIP2, does not alter response to salt and drought stresses in transgenic arabidopsis vol.18, pp.1, 2015, https://doi.org/10.1007/s12892-014-0100-7