Physiological Characteristics and Morphological Changes of Chinese Cabbage (Brassica rapa L. ssp. campestris) to Potassium Toxicity

칼륨 독성에 의한 배추의 생리적 특성과 형태적 변화

  • Lee, Taek-Jong (Department of Horticulture, Kangwon National University) ;
  • Luitel, Binod Prasad (Department of Horticulture, Kangwon National University) ;
  • Heo, Kweon (Department of Applied Plant Science, Kangwon National University) ;
  • Choi, Bong-Jun (Research Institute of Agriculture & Life Science, CMC Korea Inc.) ;
  • Kang, Won-Hee (Department of Horticulture, Kangwon National University)
  • Received : 2011.07.25
  • Accepted : 2011.10.13
  • Published : 2011.12.31

Abstract

Overusing chemical fertilizers involves potassium accumulation in the soil, which can become a toxicity problem in agriculture. This study was conducted to investigate the effect of potassium (K) treatment on growth, physiological characteristics, and morphological changes using Chinese cabbage (Brassica rapa L. ssp. campestris). With high (600 mM) K treatment, the plant growth traits of leaf length, leaf area, and fresh and dry weight of shoots and roots decreased, whereas chlorophyll content increased. As the concentration of K increasing, total N, P, and K increased in leaves, but concentrations of Ca, Mg, and Na decreased. However, Mn, Fe and Zn contents were highest in 100 mM K treatment. Chlorophyll a, b, and carotenoids increased with increasing K concentration. Maximum photochemical efficiency ($F_v/F_m$) was not significant in the all treatments, whereas $CO_2$ assimilation decreased with increasing K level due to stomatal degradation. Total free amino acids increased with the 10 and 100 mM K but decreased at 600 mM K treatments. Therefore, the growth and physiological characteristics of Chinese cabbage ascertained that tolerance up to 100 mM K when grown with nutrient solution in pot culture.

본 연구는 칼륨의 독성에 따른 배추의 생육과 생리적 특성 그리고 형태적 변화를 관찰하기 위하여 수행하였다. 100mM의 칼륨 농도 처리구까지 전체적인 생육이 증가한 반면, 600mM 처리구에서 생육이 가장 저조하였다. 칼륨 처리 농도가 높을수록 N, P, K, 함량은 증가하였지만 Ca, Mg, Na 함량은 감소하는 경향을 보였으며 미량원소, Fe, Mn, Zn의 경우 100mM의 처리구에서 가장 높은 함량을 나타내었다. 생체중당 Chl a, b와 carotenoid 함량은 600mM에서 가장 많이 증가하였으나 증가한 엽록소 함량에 비해 광합성효율($F_v/F_m$)은 처리구간에 차이가 없었고 $CO_2$ 동화율은 오히려 감소하였다. 이는 칼륨 과다에 의한 삼투스트레스의 결과로 기공의 퇴화와 $CO_2$ 동화능력과 밀접한 관계가 있는 것을 형태학적 관찰로 확인되었다. Total free amino acid의 경우 100mM 처리구까지 칼륨 처리 농도가 증가함에 따라 증가한 반면 600mM에서 급격히 감소하였다. 따라서 본 실험에서의 배추는100mM의 칼륨 농도까지는 긍정적인 효과가 있는 것으로 판단되었다.

Keywords

References

  1. Abadia, A., R. Belkohodja, F. Morales, and J. Abadia. 1999. Effects of salinity on the photosynthetic pigment composition of barley (Hordeum vulgare L.) growth under a triple line-source sprinkler system in the field. J. Plant Physiol. 15:392-400.
  2. Abadia, J., J.N. Nishio, E. Monge, L. Montanes, and L. Hears. 1985. Mineral composition of peach tree leaves affected by iron chlorosis. J. Plant Nutr. 8:697-708. https://doi.org/10.1080/01904168509363378
  3. Bradbury, I.K. and D.C. Malcolm. 1977. The effect of phosphorus and potassium on transpiration, leaf diffusive resistance and water use efficiency in sitka spruce (Picea sitchensis) seedlings. J. Appl. Ecol. 14:631-642. https://doi.org/10.2307/2402573
  4. Cao, W. and T.W. Tibbitts. 1991. Potassium concentration effect on growth, gas exchange and mineral accumulation in potatoes. J. Plant Nutr. 14:525-537. https://doi.org/10.1080/01904169109364222
  5. Carvajal, M., V. Martinez, and A. Cerda. 1999. Influence of magnesium and salinity on tomato plants grown in hydroponic culture. J. Plant Nutr. 22:177-190. https://doi.org/10.1080/01904169909365616
  6. Chaves, M.M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103:551-560.
  7. Cheeeseman, J.M. 1988. Mechanism of salinity to tolerance in plants. Plant Physiol. 87:547-559. https://doi.org/10.1104/pp.87.3.547
  8. Choi, J.M., K.H. Lee, and B.Y. Yeon. 2004. Effect of potassium concentrations in fertilizer solution on growth of and nutrient uptake by oriental hybrid Lily 'Casa Blanca'. Kor. J. Hort. Sci. Technol. 22:339-345.
  9. Christiansen, M.N. 1982. World environment limitations to food and fiber culture. In: M.N. Christiansen, C.F. Lewis (eds) Breeding plants for less favourable environments. John Wiley and Sons, New York, pp. 1-11.
  10. Clyde, W., S.M. Lesch, and C.M. Grieve. 2000. Growth stage modulates salinity tolerance of New Zealand spinach (Tetragonia tetragonioides Pall.) and red orach (Atriplex hortensis L.). Ann. Bot. 85:501-509. https://doi.org/10.1006/anbo.1999.1086
  11. Collins, R.P., P.J.C. Harris, M.J. Bateman, and J. Henderson. 2008. Effect of calcium and potassium nutrition on yield, ion content, and salt tolerance of Brassica campestris (rapa). J. Plant Nutr. 31:1461-1481. https://doi.org/10.1080/01904160802208444
  12. Eakin, J.H. 1972. Food and fertilizers. In: The fertilizer handbook (eds). The Fertilizer Inst, Washington, DC, pp. 1-21.
  13. Garcia-Valenzuela, X., E. Garcia-Moya, Q. Rascon-Cruz, L. Herrera-Estrella, and G.A. Aguado-Santacruz. 2005. Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. J. Plant Physiol. 162:650-661. https://doi.org/10.1016/j.jplph.2004.09.015
  14. Gilbert, A.G., M.V. Gadush, C. Wilson, and M.A. Madore. 1998. Amino acid accumulation in sink and source tissues of Coleus clumei Benth. during salinity stress. J. Exp. Bot. 49:107-114.
  15. Grattan, S.R. and C.M. Grieve. 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 38:275-300. https://doi.org/10.1016/0167-8809(92)90151-Z
  16. Hannan, J.J. 1998. Greenhouses: Advanced technology for protected horticulture. Prentice Hall, Upper Saddle River, NJ.
  17. Jamil, M., S. Rehman, and E.S. Rah. 2007. Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea L. Capitata). Pak. Bot. 39:753-760.
  18. Jarvis, P.G., J. Catsky, F.E. Eckardt, W. Koch, and D. Koller. 1971. General principles of gasometric methods and the main aspects of installiation design. In: Sestak Z., J. Catsky, and P.G. Jarvis (eds.) Plant photosynthesis production: Manual of methods. Dr. W. Junk NV Publishers, The Hague, pp. 49-110.
  19. Jensen, C.R. 1982. Effect of soil water osmotic potential on growth and water relations in barley during soil water depletion. Irrig. Sci. 3:111-121. https://doi.org/10.1007/BF00264854
  20. Kang, N. J., M. W. Cho, Y. H. Choi and Y. C. Um. 2007. Response in osmolyte accumulation to chilling stress in cucurbits plants. J. Bio-Env. Con. 16:303-308.
  21. Kim, J.S., I.S. Shim, and M.J. Kim. 2010a. Physiological response of Chinese cabbage to salt stress. Kor. J. Hort. Sci. Technol. 28:343-352.
  22. Kim, J.M., J. Kim, H.G. Gwon, E.S. Park, J.S. Jeong, and J.M. Choi. 2010b. Influence of potassium concentrations in fertilizer solution on the growth, appearance of physiological disorder and tissue nutrient contents of eggplant (Solanum melogena L.). Kor. J. Hort. Sci. Technol. 28:743-749.
  23. Kim, K.Y., T.C. Seo, and Y.C. Kim. 1999. Effect of the milliequivalent ratio of K to Ca in the nutrient solution on the growth, yield and blossom and rot of tomatoes grown by perlite culture in hot season. Kor. J. Hort. Sci. Technol. 40:652-656.
  24. Krause, G.H. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  25. Lawlor, D.W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25:275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  26. Lee, T. J., B. P. Luitel, and W. H. Kang. 2011. Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa. L. ssp. campestris). Hort. Environ. Biotechnol. 52:252-258. https://doi.org/10.1007/s13580-011-0224-3
  27. Lindhauer, M.G. 1985. Influence of $K^+$ nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.). Z. Pflanz. Bodenkd. 148:654-669. https://doi.org/10.1002/jpln.19851480608
  28. Marschner, H. 1995. Mineral nutrition of higher plants, 2nd edn. Academin Press, San Diego, California, USA.
  29. Maynard, D.N. 1979. Nutritional disorders of vegetable crops. J. Plant Nutr. 1:1-23. https://doi.org/10.1080/01904167909362696
  30. Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition, 5th edn. Kluwer Academic Publishers.
  31. Misra, A.N., S.M. Sahl, M. Misra, P. Singh, T. Meera, N. Das, M. Har, and P. Sahu. 1997. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plant 39:257-262. https://doi.org/10.1023/A:1000357323205
  32. Nelson, P.V. 1991. Greenhouse operation and management, 4th edn. Prentice Hall.
  33. Sabater, B. and M.I. Rodriguez. 1978. Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels. Physiol. Plant 43:274-276. https://doi.org/10.1111/j.1399-3054.1978.tb02577.x
  34. Shaner, D.L. and J.S. Boyer. 1976. Nitrate reductase activity in maize (Zea mays L.) leaves. II. Regulation by nitrate flux at low leaf water potential. Plant Physiol. 58:505-509. https://doi.org/10.1104/pp.58.4.505
  35. Singh, M.P., S.K. Pandey, M. Sing, P.C. Ram, and B.B. Sing. 1990. Photosynthesis, transpiration, stomatal conductance and leaf chlorophyll content in mustard genotypes grown under sodic conditions. Photosynthetica 24:623-627.
  36. Tiuna, A.L., C. Kaya, and M. Ashraf. 2010. Potassium sulfate improves water deficit tolerance in melon plants grown under glasshouse conditions. J. Plant Nutr. 33:1276-1286. https://doi.org/10.1080/01904167.2010.484089
  37. Yu, H., T. Li, and J. Zhou. 2007. Salt accumulation, translocation and ion composition in greenhouse soil profiles. Plant Nutr. Fert. Sci. 13:642-650.