Changes in Physiological Characteristics of Barley Genotypes under Drought Stress

한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화

  • 이변우 (서울대학교 식물생산과학부) ;
  • 부금동 (서울대학교 식물생산과학부) ;
  • 백남천 (서울대학교 식물생산과학부) ;
  • 김정곤 (농촌진흥청 작물시험장)
  • Published : 2003.12.01

Abstract

Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

이 논문은 한발저항성이 다른 6개 보리 품종의 한발에 따른 생장, 잎의 수분포텐셜(leaf water potential, LWP), 상대함수량(leaf relative water content, RWC), 삼투압(leaf osmotic potential, OP), 삼투조정(osmotic adjustment, OA), 팽압(leaf turgor pressure, LTP), 순광합섬, 기공전도도, 엽육전도도, 엽록소형광 등의 변화를 조사하여 비교한 결과를 요약하면 다음과 같다. 1 한발 처리시 토양수분포텐셜은 -0.05㎫이었고. 종료시에는 -0.29㎫로 저하하였다. Dicktoo-S 동보리 1호, Dicktoo-L, Dicktoo-T, 수원쌀보리 365호, 탑골보리 품종의 한발처리구 건물중은 각각 대조구(처리기간종 -0.05㎫ 유지)에 비하여 68%, 69%, 70%, 86%, 55%, 37%를 나타내어 Dicktoo 계통과 동보리1호의 한발저항성이 강하였고, 수원쌀보리 365호와 탑골보리는 한발저항성이 약하였다. 2. 한발저항성이 강한 품종은 삼투조정능력이 커서 한발처리에 따른 RWC와 LWP의 저하가 작았고 팽압유지능력이 컸다. 3. 한발처리에 따라 순광합성이 저하하였고 그 저하정도는 한발저항성이 큰 품종이 작았는데, 이는 한발저항성이 큰 품종이 기공전도도, 엽육전도도 및 PSII 최대양자수율(Fv/Fm)의 저하가 적었기 때문이었다. 4. 결론적으로 저항성이 큰 품종은 삼투조정에 의한 수분유지능력이 크고 이에 따라 광합성저하가 적어 상대적으로 생장의 감소가 적은 것으로 판단되었다.

Keywords

References

  1. Agueda, G., M. Isaura, and A. Luis. 1999. Barley yield in water stressconditions. The influence of precocity, osmotic adjustment andstomatal conductance. Field Crops Research. 62 : 23-34 https://doi.org/10.1016/S0378-4290(99)00002-7
  2. Boyer, J. S. 1970. Leaf enlargement and metabolic rates in corn, Soybean, and sunflower at various leaf water potentials. Plant Physiol.26 : 233-235
  3. Brestic, M., G. Cornic, M. J. Fryer, and N. R. Baker. 1995. Does Photorespiration protect the photosynthetic apparatus in French beanleaves from photoinhibition during drought stress. Planta. 196 :450-457
  4. Choi, W. Y., Y. W. Kwon, and J. H. Park. 1997. Grain yield and PhySiological responses of water stress at reproductive stage in barley.Korean J.Crop. Sci. 42(3): 263-269
  5. Costa, F. M. G., A. T. Pham Thi, C. Pimentel, R. O. Pereyra Rossiello,Y. Zuily-Fodil, and D. Laffray. 2000. DiHerences in growth andwater relations among Phaseolus vulgaris cultivars in response toinduced drought stress. Environ. Exp. Bot. 43 : 227-237 https://doi.org/10.1016/S0098-8472(99)00060-X
  6. Crowe, J. H., L. M. Crowe, J. F. Carpenter, et al. 1988. Interaction of sugars with membranes[J]. Biochimica et. Biophysica Acta Membranes Reviews. 947 : 367-384 https://doi.org/10.1016/0304-4157(88)90015-9
  7. Farquhar, G. D. and R. A. Richards. 1984. Isotopic composition ofplant carbon correlates with water use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11 : 539-552 https://doi.org/10.1071/PP9840539
  8. Goudriaan, J. and H. H. van Laar. 1994. Modelling potential cropgrowth processes textbook with exercises. Klumwer AcademicPublishers. 152-160
  9. Hsiao, T. C. 1973. Plant response to water stress. Annual Review ofPlant Physiology. 24 : 519-570 https://doi.org/10.1146/annurev.pp.24.060173.002511
  10. Hsiao, T. C., J. C. O'Toole, E. B. Yambao, and N. C. Turner. 1984.Influence of osmotic adjustment n leaf rolling and tissue death inrice (Oryza sativa L.). Plant Physiol. 75 : 338-341 https://doi.org/10.1104/pp.75.2.338
  11. Keim, D. L. and W. E. Kronstad. 1981. Drought response of winterwheat cultivars grown under field stress conditions. Crop Sci. 21 :11-15 https://doi.org/10.2135/cropsci1981.0011183X002100010003x
  12. Kramer, P. J. 1983. Water relations of plants. Academic Press. 404492
  13. Li, D. Q., Y. Q. Zhang, Q. Zou, and B. S. Cheng. 1992. Effect of soilwater stress on water status, Photosynthesis and yield of wheat with drought resistance. Journal of Shandong Agricultural University. 23(2): 125-130
  14. Ludlow, M. M. 1980. Adaptive significance of stomatal responses towater stress, In: Turner, N.C., P. J. Kramer(EDs). Adaptation ofplants to water and high temperature stress. Wiley, New York. 123-138
  15. Park, M. E. 1995. The effect of soil moisture stress on the growth of barley and grain quality. Korean J. Soc. Soil. Sci. Fert. 28(2): 165-175
  16. Slatyer, R. O. 1973. Plant response to climatic factors. Unesco Paris.184
  17. Wilson, J. R., M. J. Fisher, E. D. Schulze, G. R. Dolby, and M. M. Ludlow. 1979. Comparison between pressure-volume and dewpoint-hygrometry techniques for determining the water relationscharacteristics of grass and legume leaves. Occologia. 41 : 77-88 https://doi.org/10.1007/BF00344838
  18. Wu, Y. Y., D. Q. Li, S. J. Zhao, and Q. Zou. 1999. Osmotic adjustmentand photosynthesis of wheat leaves under soil water stress. Acta.Agro. SINICA. 25(6): 752-758