• Title/Summary/Keyword: stochastic simulation.

Search Result 786, Processing Time 0.023 seconds

M/G/1 Queueing Model for the Performance Estimation of AS/RS (자동창고시스템의 성능평가를 위한 M/G/1 대기모형)

  • Lee, Mun-Hwan;Lim, Si-Yeong;Heo, Seon;Lee, Yeong-Hae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.253-256
    • /
    • 2000
  • In general, Automated Storage/Retrieval Systems (AS/RS ) have racks of equal sized cells to utilize the concept of unit-load. Most of the techniques for the performance estimation of a unit-load AS/RS are a static model or computer simulation. Especially, their models were developed under assumption that the Storage/Retrieval (S/R) machine performs only single command (SC) or dual command (DC). In reality, defending on the operating policy and the status of the system at a particular time, the S/B machine performs a SC or a DC, or becomes .: idle. In order to resolve these weak points, we propose a stochastic model for the performance estimation of unit-load AS/RS by using a single-server queueing model. Expected numbers of waiting storage and retrieval commands are found

  • PDF

On Fleet Sizing and Distribution Policy of Transportation Equipments in Pure Hub-and-Spoke Networks : The Case of Compound Poisson Process (순 방사형 물류체계에서 수송장비의 보유대수 결정과 분배정책 : 복합포아송과정을 따를 경우)

  • 서순근;이병호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.109-123
    • /
    • 1999
  • Fleet sizing and empty equipment redistribution are two of the most critical problems in managing a fleet of equipment over a transportation network. Where the demand pattern followed the compound Poisson process(CPP) which can be generated one or more at a time under homogeneous Poisson process(HPP), this paper presented a mathematical model to determine control parameters of a decentralized distribution policy and fleet size in case of the pure hub-and-spoke system, a popular form of a logistics system. and validated this model by simulation. That is, where the number of demanded equipments followed geometric and binomial distributions, respectively, cost models on the pure hub-and-spoke logistics system with deterministic trans-portation times, which could be solved analytically, were established and analyzed. We also compared the deterministic case with stochastic one that the transportation time follows some probability distributions.

  • PDF

On an Epidemic Model in a Closed Stratified Population (밀폐된 계층인구에 있어서 유행병 모델)

  • Jeong, Hyeong-Hwan;Ju, Su-Won;Lee, Gwang-U
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.365-370
    • /
    • 1993
  • Of the assumptions commonly used in continuous infection model, the least likely to be even approximately true in large population, is that of homogeneous mixing. In this paper, We investigate a model for the spread of infection amongst a population which is divided into classes, such that the individuals of each class mix homogeneously amongst themselves, but mix to a lesser degree with individuals of other class. The stochastic model in this form is intractable and approximations are made, yielding results in reasonable agreement with simulation trials.

  • PDF

Optimal Electric Energy Subscription Policy for Multiple Plants with Uncertain Demand

  • Nilrangsee, Puvarin;Bohez, Erik L.J.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.106-118
    • /
    • 2007
  • This paper present a new optimization model to generate aggregate production planning by considering electric cost. The new Time Of Switching (TOS) electric type is introduced by switching over Time Of Day (TOD) and Time Of Use (TOU) electric types to minimize the electric cost. The fuzzy demand and Dynamic inventory tracking with multiple plant capacity are modeled to cover the uncertain demand of customer. The constraint for minimum hour limitation of plant running per one start up event is introduced to minimize plants idle time. Furthermore; the Optimal Weight Moving Average Factor for customer demand forecasting is introduced by monthly factors to reduce forecasting error. Application is illustrated for multiple cement mill plants. The mathematical model was formulated in spreadsheet format. Then the spreadsheet-solver technique was used as a tool to solve the model. A simulation running on part of the system in a test for six months shows the optimal solution could save 60% of the actual cost.

A Multi-Class Task Scheduling Strategy for Heterogeneous Distributed Computing Systems

  • El-Zoghdy, S.F.;Ghoneim, Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.117-135
    • /
    • 2016
  • Performance enhancement is one of the most important issues in high performance distributed computing systems. In such computing systems, online users submit their jobs anytime and anywhere to a set of dynamic resources. Jobs arrival and processes execution times are stochastic. The performance of a distributed computing system can be improved by using an effective load balancing strategy to redistribute the user tasks among computing resources for efficient utilization. This paper presents a multi-class load balancing strategy that balances different classes of user tasks on multiple heterogeneous computing nodes to minimize the per-class mean response time. For a wide range of system parameters, the performance of the proposed multi-class load balancing strategy is compared with that of the random distribution load balancing, and uniform distribution load balancing strategies using simulation. The results show that, the proposed strategy outperforms the other two studied strategies in terms of average task response time, and average computing nodes utilization.

Approximation of reliability constraints by estimating quantile functions

  • Ching, Jianye;Hsu, Wei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.127-145
    • /
    • 2009
  • A novel approach is proposed to effectively estimate the quantile functions of normalized performance indices of reliability constraints in a reliability-based optimization (RBO) problem. These quantile functions are not only estimated as functions of exceedance probabilities but also as functions of the design variables of the target RBO problem. Once these quantile functions are obtained, all reliability constraints in the target RBO problem can be transformed into non-probabilistic ordinary ones, and the RBO problem can be solved as if it is an ordinary optimization problem. Two numerical examples are investigated to verify the proposed novel approach. The results show that the approach may be capable of finding approximate solutions that are close to the actual solution of the target RBO problem.

Structural Reliability Analysis of the Roket Motor Case considering Uncertainties in Material Properties (재료물성치의 분포를 고려한 로켓모터케이스의 구조 신뢰성 해석)

  • Ro, Young-Hee;Goo, Song-Hoe
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.523-526
    • /
    • 2011
  • This is concerned with the structural reliability analysis(RA) considering uncertainties in material properties. This method is performed by the stochastic process using Kriging with calculating the distribution of probability and equation of limit state for saving calculated and analyzed time. The proposed methodology is applied to the rocket motor case and compared with monte-calro simulation in efficiency and accuracy of this process.

  • PDF

Discrete Choice Dynamic Pricing and Seat Control Problem in Airlines (항공사 이산형 동적가격 결정 및 좌석통제 문제)

  • Yoon, Moon-Gil;Lee, Hwi-Young;Song, Yoon-Sook
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.91-103
    • /
    • 2012
  • Revenue management problems originated in the 1970's in the context of the airline industry have been successfully introduced in airline industries. It has started on the capacity control by booking classes for available seats, and has been recognized as a powerful tool to maximize the total revenue. Changing customer behavior and airline market environments, however, has required a new mechanism for improving the revenue. Dynamic pricing is one of innovative tools which is to adjust prices according to the market status. In this paper, we consider a dynamic pricing and seat control problem for discrete time horizon. The problem can be modeled as a stochastic programming problem. Applying the linear approximation technique and given the price set for each time, we suggest a mixed Integer Programming model to solve our problem efficiently. From the simulation results, we can find our model makes good performance and can be expanded to other comprehensive problems.

Establishment of Preventive Maintenance Planning for Generation Facility Considering Cost (비용을 고려한 발전설비의 예방유지보수 계획 수립)

  • Kim, Hung-Jun;Shin, Jun-Seok;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.328-333
    • /
    • 2007
  • Traditional maintenance planning is based on a constant maintenance interval for equipment life. In order to consider economic aspect for tm based preventive maintenance, preventive maintenance is desirable to be scheduled by RCM(Reliability-Centered Maintenance) evaluation. The main objective of RCM is to reduce the maintenance cost, by focusing on the most important functions of the system and avoiding or removing maintenance actions that are not strictly necessary. So, Markov state model is utilized considering stochastic state in RCM In this paper, a Markov state model much can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by the stepwise Markov model in detail. Also, because the system is not continuously monitored, the inspection is considered. In case study, simulation results about RCM will be shown using the real historical data of combustion turbine generating unit in Korean power systems.

  • PDF

Nonlinear Control of High Precision Pointing Stabilization Systems with Heavy Loads (대부하 정밀 표적지향 안정화 시스템의 비선형 제어기법 연구)

  • 이대옥;강태하;김학성;박광웅
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.157-178
    • /
    • 2001
  • In this paper, the nonlinear control of high precision pointing stabilization system using feedback-linearization design methodology based on system parameter identification is discussed. Modern nonlinear servomechanism theory is adapted to cope with the hard nonlinearities inherent in the turret system. The mathematical models of electrical turret driving system to develop a high performance control algorithm are derived, and the parameter estimation algorithm identifying the unknown system parameters such as vicious and coulomb frictions, stiffness and inertia is developed. Through computer simulation and experiments, it is shown that pointing and tracking accuracy and stabilization against the wideband stochastic disturbance induced by vehicle running on the bump course are improved. Therefore, it is considered the proposed nonlinear control technique is effective in counteracting the nonlinearities and disturbances.

  • PDF